• Title/Summary/Keyword: 슬래그골재

Search Result 368, Processing Time 0.024 seconds

Physical Properties of Polymer Concrete Composites Using Rapid-Cooled Steel Slag (II) (Use of Rapid-Cooled Steel Slag in Replacement of Fine and Coarse Aggregate) (급냉 제강슬래그를 사용한 폴리머 콘크리트 복합재료의 물성(II) (급냉 제강슬래그를 잔골재와 굵은 골재 대체용으로 사용))

  • Hwang, Eui-Hwan;Lee, Choul-Ho;Kim, Jin-Man
    • Applied Chemistry for Engineering
    • /
    • v.23 no.4
    • /
    • pp.409-415
    • /
    • 2012
  • To recycle the steel slag as manufactured composite materials of polymer concretes, we used the atomizing method to make round aggregates from steel slag, which is treated as industrial wastes. A round rapid-cooled steel slag was used to replace fine aggregate (river sand) or coarse aggregate (crushed aggregate), depending on the grain size. To examine general physical properties of polymer concrete composites manufactured from rapid-cooled steel slag, the polymer concrete specimen with various proportions depending on the addition ratio of polymer binder and replacement ratio of rapid-cooled steel slag were manufactured. In the result of the tests, the mechanical strength of the specimen made by replacing the optimum amount of rapid-cooled steel slag increased notably (maximum compressive strength 117.1 MPa), and the use of polymer binder, which had the most impact on the production cost of polymer concrete composites, could be remarkably reduced. However, the mechanical strength of the specimen was markedly reduced in hot water resistance test of polymer concrete composite.

Research on Design Mixing and Manufacturing of Recycled Aggregate for Concrete and Coarse Aggregate of Steelmaking Slag (콘크리트용 순환골재와 제강슬래그의 굵은골재 설계배합 및 제조에 관한 연구)

  • Jong-Gil Kim;Seung-Tae Lee;Tae-Han Kown
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.341-348
    • /
    • 2023
  • In this study, in order to minimize the increase in the amount of various industrial by-products due to the rapid growth of the industry and the intensification of the depletion of natural aggregate resources, the material test using recycled aggregate and steelmaking slag and the proper mixing ratio of recycled concrete were to be derived. In this study, first, the conformity of the quality standards of the materials used in the field was confirmed, and the workability and molding results were shown when used alone or mixed. Therefore, the feasibility of application as aggregate for concrete was evaluated through a total of 4-type mixtures of cement types, admixtures, coarse aggregates, and fine aggregates. As a result of the experiment, it was confirmed that the slump of unhardened concrete, the amount of air, chloride and compressive strength of hardened concrete according to the replacement rate were different from the measured values of general concrete quality characteristics. According to this, it was confirmed that the quality characteristics of the standard design criteria were satisfied.

Physical Properties of Permeable Concrete Using Slag as an Aggregate (슬래그 골재를 사용한 투수성 콘크리트의 물리적 성질)

  • 이용구;김희덕;성휘정;최재진
    • Proceedings of the KAIS Fall Conference
    • /
    • 2001.05a
    • /
    • pp.236-240
    • /
    • 2001
  • 본 연구는 제철소에서 부산물로 생성되는 고로슬래그 및 제강슬래그를 골재의 일부로 대체 사용하고 고성능AE감수제를 적정량 사용하여 고품질의 투수성 콘크리트를 제조하는 것에 관한 것이다. 실험결과 고성능AE감수제와 슬래그를 사용하는 경우 투수계수 0.1cm/sec 이상을 유지하는 상태에서 재령 28일의 압축강도 240kgf/㎠ 정도까지의 비교적 높은 강도의 투수성 콘크리트를 경제적으로 제조할 수 있음이 확인되었다.

Experimental Study on Shear Performance of RC Beams with Electric Arc Furnace Oxidizing Slag Aggregates (전기로 산화슬래그 골재를 사용한 RC 보의 전단 성능에 관한 실험적 연구)

  • Lee, Yong Jun;Jeong, Chan Yu;Lee, Bum Sik;Kim, Sang Woo;Kim, Kil Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.5
    • /
    • pp.40-48
    • /
    • 2012
  • This study evaluates the shear performance of reinforced concrete beams with electric arc furnace oxidizing slag aggregates generated from iron manufacture. A total of six simple supported specimens were cast and tested in shear. The main test variables were the type of aggregates and the amount of shear reinforcements. The specimens under four point loading had a shear span-to-depth ratio of 2.5 and a rectangular section with a width of 200mm and an effective depth of 300mm. Existing equations to predict the shear strength of the specimens were used in this study. Furthermore, a finite element analysis using shear analytical model was performed to trace the shear behavior of the specimens with electric arc furnace oxidizing aggregates. From the test results, the shear performance of specimens with electric arc furnace oxidizing aggregates is similar to that of specimens with natural aggregates.

Experimental Study on Evaluation on Volume Stability of the Electric Arc Furnace Oxidizing Slag Aggregate (전기로 산화슬래그 골재의 체적안정성 평가에 관한 실험적 연구)

  • Lim, Hee Seob;Lee, Han Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.2
    • /
    • pp.78-86
    • /
    • 2017
  • As the amount of slag generated annually increases, attempts to recycle slag as high value products are underway in order to develop an efficient resource recycling industry based on slag and derive economic benefits as well. However, the application of electric arc furnace (EOS) slag as construction material is practically limited because of the unstable substances included in it, such as free CaO.(EOS contains a small amount of free CaO, but several limitations still exist. Slag is stored for more than 3 months depending on the quantity of slag, which leads to additional economic loss. In this study, the amount of free CaO present in EOS is quantitatively evaluated to examine its qualities as a potential construction material and verify its application as concrete material. The quantitative analysis of free CaO present in EOS is performed using ethylene glycol. The free CaO contents of EOS samples were found to be below 0.5%. This satisfies the criteria specified in KS F 4571, which states that the CaO content should be below 40% and $CaO/SiO_2$ ratio should be below 2.0. In addition, it was confirmed that free CaO content difference appears to be dependent on the aging period and storage position.

Study of Polymer Rapid Setting Cement Concrete Using Electric Arc Furnace Oxidizing Slag Aggregate (전기로(電氣爐) 산화(酸化)슬래그 잔골재를 이용한 폴리머 속경성(速硬性) 시멘트 콘크리트 기초물성(基礎物性) 연구(硏究))

  • Jung, Won-Kyong;Gill, Yong-Soo;Kang, Seung-Hee
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.30-40
    • /
    • 2012
  • Electric arc furnace slag is made in ironworks during steel refining, it is been increasing chemical and physical resistibility using ageing method of unstable state of melting steel slag for using concrete's fine aggregates. Which is been changing stable molecular structure of aggregates, it restrains moving of ion and molecule. In Korea, KS F 4571 has been prepared for using the electric arc furnace oxidizing slag to concrete aggregates(EFS). In this study, Electric arc furnace oxidizing slag is used in the PRCC(Polymer Rapid setting Cement Concrete) which is applied a bridge pavement of rehabilitation, largely. The results showed that the increment of compressive strength development by 10- 20%. The flexural strength of EFS-Con increased greatly as the electric arc furnace oxidizing slag changed. The compressive strength and flexural strength developed enough for opening the overlayed EFS-Con to the traffic after 4 hours of EFS-Con placement. The permeability of EFS-Con was evaluated as negligible due to its very low charge passed. Thus, EFS-Con could be used at repairing or overlaying the concrete at fast-track job sites.

A Study on the Improvement of the Legal System Related to Electro-Optical Oxidation Slag

  • Kim, Hyeok-Jung;Lee, Young-Woo;Park, Se-Hun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.12
    • /
    • pp.299-303
    • /
    • 2020
  • Currently, electric furnace oxide slag is mostly used for soil or road use due to its nature. Although electric furnace oxidation slag is an industrial byproduct, not a circulating aggregate, the shortcomings of electric furnace oxidation slag are gradually being resolved due to the development of technology, and it is said that electric furnace oxidation slag is enough to be used as aggregates in light of research and technology conditions outside of Korea. However, there are difficulties in expanding construction and application, given that the current standard for electric furnace oxid slag only defines recycling purposes and does not have specific regulations. Therefore, institutional supplementation is needed to utilize oxidation slag as electricity. In this study, the laws and system related to oxidation slag by electricity are reviewed, laws related to recycled aggregate are examined, and measures for improvement are proposed.

Removal Characteristics of Heavy Metals from Aqueous Solution by Recycled Aggregate and Recycled Aggregate/Steel Slag Composites as Industrial Byproducts (산업부산물인 순환골재 및 순환골재/제강슬래그 조합을 이용한 수용액상에서의 중금속 제거 특성)

  • Shin, Woo-Seok;Kim, Young-Kee
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.477-482
    • /
    • 2015
  • This study examined the adsorption characteristics of heavy metal ions ($Cr^{6+}$, $As^{3+}$) in an aqueous solution using recycled aggregate (RA) and recycled aggregate (RA)/steel slag (SS) composites. The RA and SS are favorable for the absorbent because it contains about 91% and 86.9%, respectively, which are some of the major adsorbent ingredients (CaO, $SiO_2$, $Al_2O_3$ and $Fe_2O_3$) for heavy metal. Kinetic equilibrium of $Cr^{6+}$ and $As^{3+}$ in RA and RA/SS composites reached within 180 min and 360 min, respectively. The kinetic data presented that the slow course of adsorption follows the Pseudo first and second order models. The equilibrium data were well fitted by the Freundlich model and showed the affinity order of $As^{3+}$ > $Cr^{6+}$. The results of $As^{3+}$ also showed that the adsorption capacity slightly increased with increasing pH from 6 to 10. Meanwhile, the adsorption capacity of $Cr^{6+}$ was slightly decreased. From these results, it was concluded that the RA and RA/SS composites can be successfully used for removing the heavy metals ($Cr^{6+}$ and $As^{3+}$) from aqueous solutions.

Properties of Alkali-activated Slag-Red Mud Soil Pavement Using Recycled Aggregate (순환골재를 사용한 알칼리활성화 슬래그-레드머드 흙포장재의 특성)

  • Kang, Suk-Pyo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.276-283
    • /
    • 2016
  • Red mud is an inorganic by-product produced from the mineral processing of alumina from Bauxite ores. the development of alkali-activated slag-red mud cement can be a representative study aimed at recycling the strong alkali of the red mud as a construction material. This study is to investigate the optimum water content, compressive strength, moisture absorption coefficient and efflorescence of alkali-activated slag-red mud soil pavement according to the recycling fine aggregate content. The results showed that the optimum water content, moisture absorption coefficient and efflorescence area of alkali-activated slag-red mud soil pavement increased but the compressive strength of that decreased as the recycled fine aggregate content increased.

Characteristics of Shrinkage on Concrete using Electric Arc Furnace Slag as Coarse Aggregate (전기로 산화 슬래그를 굵은 골재로 사용한 콘크리트의 수축 특성)

  • Choi, Hyo-Eun;Choi, So-Yeong;Kim, Il-Sun;Yang, Eun-Ik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.125-132
    • /
    • 2020
  • The causes of concrete shrinkage are very diverse, in particular, aggregates impact the characteristics of shrinkage in concrete by constraining the shrinkage of cement paste. Meanwhile, owing to the lack of natural aggregate, various alternative aggregates are being developed, and their application in concrete also becomes more diverse. This study aimed to experimentally evaluate the drying and autogenous shrinkage in concrete that was composed of electric arc furnace slag as coarse aggregates. And, the results were compared with prediction models. From the results, the application of electric arc furnace slag can reduce the drying and autogenous shrinkage. In particular, autogenous shrinkage is greatly decreased. The predictions using GL2000 for drying shrinkage and Tazawa model for autogenous shrinkage were similar to the experimental results. However, the most prediction models do not consider the impact of aggregates, hence, the new prediction model should be developed or improved.