• Title/Summary/Keyword: 스폴링 폭

Search Result 4, Processing Time 0.016 seconds

Quantitative assessment of spalling depth and width using statistical inference theory in underground openings (통계추론을 이용한 지하암반공동에서의 스폴링 깊이와 폭에 대한 정량적 평가)

  • Bang, Joon-Ho;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2010
  • Until now, the evaluation method of spalling depth using Martin et al. (1999)'s linear regression relations has long been known applicable. However, it is not likely that the proposed equation is applicable to the openings other than circular type and mostly overpredict the spalling depth in comparison with actual spalling cases. Moreover, the evaluation method to estimate the spalling width has not been presented yet; it is essential to evaluate the spalling width in addition to the spalling depth, because the shape of the spalled region influences the choice of suitable rock reinforcement. In this study, linear regression equations, in which normalized spalling depth ($d_f/W_D$) and normalized spalling width ($w_f/W_D$) are functions of three spalling evaluation indices, ${\sigma}_1/{\sigma}_c,\;D_{is}(={\sigma}_{max}/{\sigma}_c)$ and ${\sigma}_{dev}/{\sigma}_{cm}$, are established based on in-situ spalling observations and CWFS simulation results. Confidence intervals of 95% using the statistical inference theory are used in verifying the reliability of linear regression equations. Spalling depth ($d_f$) and spalling width ($w_f$) predicted from the proposed linear regression relations, which take three spalling evaluation indices into account, showed reasonable match with in-situ observations by adopting weighting factors considering the degree of variance of linear regression relations.

Measurement of Crack Width of Pavements Using Image Processing (이미지프로세싱을 이용한 도로포장의 균열폭 측정에 관한 연구)

  • Ko, Ji-Hoon;Suh, Young-Chan
    • International Journal of Highway Engineering
    • /
    • v.4 no.2 s.12
    • /
    • pp.33-42
    • /
    • 2002
  • The cracks in the pavements result from drying shrinkage, temperature change, repeated traffic loadings and so on. The reduction of soil support, spatting and many local failures are caused by water and incompressible foreign materials infiltrated into the cracks. In order to reduce this kind of problems the crack width must be controlled and managed by the accurate measurement. The current method is a visual survey using a microscope, which requires traffic blocking. The purpose of this study is to find the best condition to measure accurate crack width using automated pavement condition survey equipment running at the similar speed as other vehicles. In this study pavement surfaces are filmed on an enlarged scale by the camera with a zoom lens, and then the proper focal distance is determined according to the crack width through a pilot survey. The conditions for measurement of the accurate crack width using the image processing technique are suggested by comparing crack widths surveyed using a microscope in the field with those computed by various factors in the image processing program, STADI-2. In conclusion, the camera with a focal distance of 75m could detect crack range of 0.5mm$\sim$1.2mm In width with an accuracy of 80% for CRCP. The camera with a focal distance of 12.5mm could detect crack range of 1.8mm$\sim$3.3mm in width with an accuracy of 90% for asphalt pavement.

  • PDF

Impact Resistance Evaluation of RC Beams Strengthened with Carbon FRP Sheet and Steel Fiber (CFRP 시트 및 강섬유로 보강된 RC 보의 충격저항 성능 평가)

  • Cho, Seong-Hun;Min, Kyung-Hwan;Kim, Yun-Ji;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.719-725
    • /
    • 2010
  • The analysis and experimental program of reinforced concrete (RC) structures for resistance against such extreme loads as earthquake, blast, and impact have been carried by many researchers and designers. Under the extreme loads, a large amount of energy is suddenly exerted to the structure, hence if the structure fails to absorb the impact energy, catastrophic collapse may occur. To prevent catastrophic collapse of structures, reinforced concrete must have adeguate toughness or it needs to be strengthened. The FRP strengthening method and SFRC are studied widely in resistance of impact load because of their high energy absorption capacity. In this study, drop weight impact tests were implemented to evaluate the impact resistance of SFRC and FRP strengthened RC beam while the total steel fiber volume fractions was fixed at 0.75% carbon FRP flexural strengthened RC beams. Futhermore, to prevent the shear-plug cracks when the impact load strikes the beams, additional FRP shear strengthening method are applied. The experimental, results showed that the FRP strengthened RC SFRC beams has high resistance of shear-plug cracks and crack width and SFRC has high resistance of concrete spalling failure compared to normal RC beams. The FRP flexural and shear strengthening RC beams has weakness in the spalling failure because the impact load concentrated the concrete face which is not strengthened with FRP sheets.

Development of a Probabilistic Joint Opening Model using the LTPP Data (LTPP Data를 이용한 확률론적 줄눈폭 예측 모델 개발)

  • Lee, Seung Woo;Chon, Sung Jae;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4D
    • /
    • pp.593-600
    • /
    • 2006
  • Joint opening of jointed concrete pavement is caused by change in temperature and humidity of adjoined slab. The magnitude of joint opening influences on the load-transfer-efficiency and the behavior of sealant. If temperature or humidity decreases, joint opening increases. Generally maximum joint opening of a given joint is predicted by using AASHTO equation. While different magnitudes of joint opening at the individual joints have been observed in a given pavement section, AASHTO equation is limited to predict average joint opening in a given pavement section. Therefore the AASHTO equation may underestimate maximum joint for the half of joint in a given pavement section. Joints showing larger opening than the designed may experience early joint sealant failure, early faulting. Also unexpected spalling may be followed due to invasion of fine aggregate into the joints after sealant pop-off. In this study, the variation of the joint opening in a given pavement section was investigated based on the LTPP SMP data. Factors affecting on the variation are explored. Finally a probabilistic joint opening model is developed. This model can account for the reliability of the magnitude of joint opening so that the designer can select the ratio of underestimated joint opening.