• Title/Summary/Keyword: 스펙트럼 형상계수

Search Result 29, Processing Time 0.019 seconds

Wind Pressure Coefficients and Spectrum Estimation of Dome by Improved Delayed Detached Eddy Simulation (Improved Delayed DES 해석을 통한 돔 형상의 풍압 계수 및 풍압 스펙트럼 산정)

  • Park, Beom-Hee;Jeon, Doo-Jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.95-102
    • /
    • 2019
  • In this study, the reliability of the analysis is evaluated by comparing the average wind pressure coefficient, RMS wind pressure coefficient and wind pressure spectrum with same condition of wind tunnel test which are calculated in the high-Reynolds number range of 1.2×106, 2.0×106 each for the typical curved shape dome structure. And it is examined by the reliability of analysis through Improved delayed detached Eddy Simulation(IDDES), which is one of the hybrid RANS/LES techniques that can analyze the realistic calculation range of high Reynolds number. As a result of the study, it was found that IDDES can be predicted very similar to the wind tunnel test. The distribution pattern of the wind pressure coefficient and wind pressure spectrum showed a similar compared with wind tunnel test.

Development of Earthquake Resistant Analysis Models for Typical Roadway Bridges (일반도로교의 내진해석모델 개발)

  • 국승규;김판배
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.1-6
    • /
    • 2002
  • The structural safety required in general design is to be proved with safety factors provided for structural members in elastic range. But, for the safety requirement in the earthquake resistant design, a specific ductile failure mechanism in plastic range should be verified according to the structural configuration. Therefore such verifications should be done in the preliminary design stage by comparing various design alternatives. In the main design stage only a confirmation of the ductile failure mechanism is required. In this study typical roadway bridges are selected and analysis models are presented for the preliminary and main design. For the two models, vibration periods and mode shapes are compared and the multi-mode spectrum method is applied to determine failure mechanisms. The failure mechanisms obtained with the two models are compared to check the properness of the model used for the preliminary design, which may well be used as an earthquake resistant analysis model in practice.

Stress & Life Evaluation of Cylindrical Roller Bearing for Aircraft Gearbox according to Roller Profile Shape (롤러 프로파일에 따른 항공용 기어박스 원통 롤러 베어링의 응력 및 수명 평가)

  • Jae-Hyun, Kim;Hyun-Woo, Han;Dongu, Im;Jung-Ho, Park;Su-Chul, Kim;Young-Jun, Park
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.6
    • /
    • pp.35-44
    • /
    • 2022
  • This study aims to evaluate the stress and life of cylindrical roller bearings used in aircraft gearboxes, and to select a roller profile that minimises the contact stress between bearing rollers and raceways. The mounting clearance of four points contact ball bearing was determined, so that cylindrical roller bearings support all radial loads, and the bearing mounting position was determined to maximise the bearing lives. In addition, the static safety factor and dynamic life of bearing were predicted according to ISO 76 & ISO/TS 16281 using the load spectrum determined based on the operating load cases of aircraft gearboxes. Furthermore, the optimal roller profile was selected by analysing the contact stress according to the roller profile shape, and the safety of each roller was evaluated. The results stated that the required safety factor and lifetime were satisfied, and Johns Gohar roller profile was optimal.

Lifetime Estimation of an Axle Drive Shaft by Calibrated Accelerated Life Test Method (CALT 방법을 이용한 액슬구동축의 수명 예측)

  • Kim, Do-Sik;Kim, Hyoung-Eui;Yoon, Sung-Han;Kang, E-Sok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.273-281
    • /
    • 2010
  • In this paper, a method to predict the fatigue life of an axle drive shaft by the calibrated accelerated life test (CALT) method is proposed. The CALT method is very effective for predicting lifetimes, significantly reducing test time, and quantifying reliability. The fatigue test is performed by considering two high stress and one low stress levels, and the lifetime at the normal stress level is predicted by extrapolation. In addition, in this study, the major reliability parameters such as the lifetime, accelerated power index, shape parameter, and scale parameter are determined by conducting various experiments. The lifetime prediction of the axle drive shaft is verified by comparing the experimental results with load spectrum data. The results confirm that the CALT method is effective for lifetime prediction and requires a short test time.

Analysis on Surface of Seed Potato using Nano-Spectrometric Sensor (나노 분광 센서를 이용한 씨감자 표면 표현형 분석)

  • Choi, Il Soo;Oh, Jong-woo;Um, Tae-Un;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.87-87
    • /
    • 2017
  • 농산물의 품질 및 성분을 측정하는데 있어 기존의 화학적 분석 방식은 정밀도가 높으나 측정에 소요되는 시간과 비용이 많이 들어, 현장 적용하기에는 한계가 있다. 일반적으로 근적외선 분광 분석(Near Infra Red Spectroscopy, NIRS) 방법은 가공 과정에 따라 빠르게 변화되는 단백질 조성 및 수분함량 측정 등에 이용되고 있다. 분석에 소요 시간이 많이 걸리는 켈달법(Kjeldahi method)에 비해 NIR 분광 분석을 통한 보정으로 연속적인 모니터링이 가능하다. 본 연구에서 사용된 시료를 고정시키기 위한 프레임을 제작한 후 NIR센서와 광원인 LED의 각도를 고정시키고 측정 대상체인 사절된 감자 크기에 따라 시료를 고정시킬 수 있는 프레임을 반사면에 위치시켰다. 확산 반사법을 이용하여 프레임에 씨감자 시료를 고정 시킨 후 백색 LED를 이용하여 감자 표면에 빛을 반사시켜 3일 동안 12시간 마다 해당 시료들(열처리, 비누용액 침지, 생감자)의 스펙트럼을 측정하였다. 해당 시료들은 측정 기간 동안 저온상태($4^{\circ}C$)와 실온상태($20^{\circ}C$)에서 보관되었다. 실험 결과는 파장대 145nm에서 저온상태에서 보관된 생감자는 시간경과에 따른 흡광도의 결정 계수값($r^2$)은 0.98 이었다. 이는 감자가 저온에서 생감자의 상태 변화가 일어나고 있다는 것을 의미하고 파장대 145nm에서 시간에 따른 저온상태에서 보관한 감자의 상태 변화 예측이 가능함을 의미한다. 비누용액에 침지시킨 후 실온에 보관한 감자는 시간이 경과함에 따라 파장이 증가함에 따라 흡광도가 증가하였다. 이는 감자에 들어있는 Polyphenol Oxidase 함량 변화로 갈변 현상이 일어난 것을 알 수 있다. 또한 실온에서 보관한 생감자도 시간 경과에 따라 갈변 현상이 일어났지만 용액에 침지시킨 감자보다는 갈변 현상이 36시간 이후로 발견되었다. 열처리 후 실온에서 보관한 감자의 경우에는 갈변현상이 나타나지 않았다. 저온상태에서 보관한 감자시료들 모두 갈변형상이 나타나지 않았지만, 24시간이 지난 후 용액에 침지시킨 감자는 갈변 현상이 발생되었다. 생감자와 열처리한 감자는 시간 경과에 따른 갈변현상이 일어나지 않았으므로, 감자의 갈변현상은 감자의 표면 처리 방법에 국한되지 않고 온도에 영향을 더 많이 받는다는 것을 나타내고 있다. 본 연구는 향후 감자의 품질 및 성분 측정에서 간편하게 사용될 수 있는 감자의 품질 계측 기술에 기여할 것으로 판단된다.

  • PDF

Optimal Estimation of the Peak Wave Period using Smoothing Method (평활화 기법을 이용한 파랑 첨두주기 최적 추정)

  • Uk-Jae, Lee;Byeong Wook, Lee;Dong-Hui, Ko;Hong-Yeon, Cho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.34 no.6
    • /
    • pp.266-274
    • /
    • 2022
  • In this study, a smoothing method was applied to improve the accuracy of peak wave period estimation using the water surface elevation observed from the Oceanographic and Meteorological Observation Tower located on the west coast of the Korean Peninsula. Validation of the application of the smoothing method was per- formed using variance of the surface elevation and total amount wave energy, and then the effect on the application of smoothing was analyzed. As a result of the analysis, the correlation coefficient between variance of the surface elevation and total amount wave energy was 0.9994, confirming that there was no problem in applying the method. Thereafter, as a result of reviewing the effect of smoothing, it was found to be reduced by about 4 times compared to the confidence interval of the existing estimated spectrum, confirming that the accuracy of the estimated peak wave period was improved. It was found that there was a statistically significant difference in proba- bility density between 4 and 6 seconds due to the smoothing application. In addition, for optimal smoothing, the appropriate number of smoothings according to the significant wave height range was calculated using a statistical technique, and the number of smoothings was found to increase due to the unstable spectral shape as the significant wave height decreased.

Estimation of Displacement Responses Using the Wavelet Decomposition Signal (웨이블릿 분해신호를 이용한 변위응답의 추정)

  • Jung, Beom-Seok;Kim, Nam-Sik;Kook, Seung-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.347-354
    • /
    • 2006
  • In this paper we have attempted to bring the wavelet transform theory to the dynamic response conversion algorithm. This algorithm is proposed for the problem of estimating the displacement data by defining the transformed responses. In this algerian, the displacement response can be obtained from the measured acceleration records by integration without requiring the knowledge of the initial velocity and displacement information. The advantage of the wavelet transform over either a pure spectral or temporal decomposition of the signal is that the pertinent signals features can be characterized in the time-frequency plane. In the response conversion procedure using the wavelet decomposition signals, not only the static component can be extracted, but also the dynamic displacement component can be separated by the structural mode from the identified displacement response. The applicability of the technique is tested by an example problem using the real bridge's superstructure under several cases of moving load. If the reliability of the identified responses is ensured, it is expected that the proposed method for estimating the impact factor can be useful in the bridge's dynamic test. This method can be useful in those practical cases when the direct measurement of the displacement is difficult as in the dynamic studies of huge structure.

Theoretical Seismic Analysis of Butterfly Valve for Nuclear Power Plant (원자력 발전소용 버터플라이밸브의 내진해석)

  • Han, Sang-Uk;Ahn, Jun-Tae;Lee, Kyung-Chul;Han, Seung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.9
    • /
    • pp.1009-1015
    • /
    • 2012
  • Valves are one of the most important components of a pipeline system in a nuclear power plant, and it is important to ensure their structural safety under seismic loads. A crucial aspect of structural safety verification is the seismic qualification, and therefore, an optimal shape design and experimental seismic qualification is necessary in case the configuration of the valve parts needs to be modified and their performance needs to be improved. Recently, intensive numerical analyses have been performed before the experimental verification in order to determine the appropriate design variables that satisfy the performance requirements under seismic loads. In this study, static and dynamic numerical structural analyses of a 200A butterfly valve for a nuclear power plant were performed according to the KEPIC MFA. The result of static analysis considering an equivalent static load under SSE condition gave an applied stress of 135 MPa. In addition, the result of dynamic analysis gave an applied stress of 183 MPa, where the CQC method using response spectrums was taken into account. These values are under the allowable strength of the materials used for manufacturing the butterfly valve, and therefore, its structural safety satisfies the requirements of KEPIC MFA.

Evaluation of bonding state of shotcrete lining using nondestructive testing methods - experimental analysis (비파괴 시험 기법을 이용한 숏크리트 배면 접착상태 평가에 관한 실험적 연구)

  • Song, Ki-Il;Cho, Gye-Chun;Chang, Seok-Bue;Hong, Eun-Soo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.1
    • /
    • pp.71-83
    • /
    • 2009
  • Shotcrete is an important primary support for tunnelling in rock. The quality control of shotcrete is a core issue in the safe construction and maintenance of tunnels. Although shotcrete may be applied well initially onto excavated rock surfaces, it is affected by blasting, rock deformation and shrinkage and can debond from the excavated surface, causing problems such as corrosion, buckling, fracturing and the creation of internal voids. This study suggests an effective non-destructive evaluation method of the tunnel shotcrete bonding state applied onto hard rocks using the impact-echo (IE) method and ground penetration radar (GPR). To verify previous numerical simulation results, experimental study carried out. Generally, the bonding state of shotcrete can be classified into void, debonded, and fully bonded. In the laboratory, three different bonding conditions were modeled. The signals obtained from the experimental IE tests were analyzed at the time domain, frequency domain, and time-frequency domain (i.e., the Short- Time Fourier transform). For all cases in the analyses, the experimental test results were in good agreement with the previous numerical simulation results, verifying this approach. Both the numerical and experimental results suggest that the bonding state of shotcrete can be evaluated through changes in the resonance frequency and geometric damping ratio in a frequency domain analysis, and through changes in the contour shape and correlation coefficient in a time-frequency analysis: as the bonding state worsens in hard rock condition, the autospectral density increases, the geometric damping ratio decreases, and the contour shape in the time-frequency domain has a long tail parallel to the time axis. The correlation coefficient can be effectively applied for a quantitative evaluation of bonding state of tunnel shotcrete. Finally, the bonding state of shotcrete can be successfully evaluated based on the process suggested in this study.