• Title/Summary/Keyword: 스펙트럼 해석

Search Result 1,028, Processing Time 0.027 seconds

An Effective Data Analysis System for Improving Throughput of Shotgun Proteomic Data based on Machine Learning (대량의 프로테옴 데이타를 효과적으로 해석하기 위한 기계학습 기반 시스템)

  • Na, Seung-Jin;Paek, Eun-Ok
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.10
    • /
    • pp.889-899
    • /
    • 2007
  • In proteomics, recent advancements In mass spectrometry technology and in protein extraction and separation technology made high-throughput analysis possible. This leads to thousands to hundreds of thousands of MS/MS spectra per single LC-MS/MS experiment. Such a large amount of data creates significant computational challenges and therefore effective data analysis methods that make efficient use of computational resources and, at the same time, provide more peptide identifications are in great need. Here, SIFTER system is designed to avoid inefficient processing of shotgun proteomic data. SIFTER provides software tools that can improve throughput of mass spectrometry-based peptide identification by filtering out poor-quality tandem mass spectra and estimating a Peptide charge state prior to applying analysis algorithms. SIFTER tools characterize and assess spectral features and thus significantly reduce the computation time and false positive rates by localizing spectra that lead to wrong identification prior to full-blown analysis. SIFTER enables fast and in-depth interpretation of tandem mass spectra.

Seismic Fragility Analysis of Lightning Arrester using Capacity Spectrum Method (역량스펙트럼 방법을 이용한 피뢰기의 지진취약도 해석)

  • Kim, Gwang-Jeon;Song, Jong-Keol
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.255-263
    • /
    • 2014
  • In this paper, seismic fragility analysis of lightning arrester is performed using capacity spectrum method(CSM). Since seismic fragility analysis of structure with many structural members is required to calculate many inelastic responses for several tens or hundreds of ground motions, simple method such as CSM is more appropriate than response history analysis(RHA). In general, accuracy of seismic response evaluated by CSM is less than that by RHA. In order to increase accuracy of CSM, equivalent SDOF method and performance point calculation technique are applied to CSM. Seismic fragility method proposed by Shinozuka et al. is used. In order to evaluate site effect of ground motions on seismic fragility, 60 different site classification earthquakes are selected as input ground motions. From the seismic fragility curves of lightning arrester evaluated by CSM and RHA, it can be observed that the seismic fragility curves evaluated by CSM are very similar to those by RHA. Also, it can be observed that main seismic failure mode of lightning arrest is bushing breakage.

Seismic Access of Offshore Subsea Manifold using RSA and THA Seismic Analysis Results for Simplified Model (단순화 모델에서의 응답스펙트럼과 시간이력 내진해석 결과를 활용한 해양플랜트용 매니폴드 실제품의 내진강도 평가)

  • Lee, Eun-Ho;Kwak, Si-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.1
    • /
    • pp.7-16
    • /
    • 2019
  • In this paper, for a seismic analysis of an offshore subsea manifold, Response Spectrum Analysis(RSA) and Time History Analysis(THA) were conducted under a various analysis conditions. Response spectrum and seismic design procedure have followed ISO19901-2 code. In case of THA, The response spectrum were converted into artificial earthquake history and both of Explicit and Implicit solvers were used to examine the characteristics of seismic analysis. For the verification, Various seismic analysis methods were applied on a single degree of freedom beam model and a simplified model of the actual manifold. The difference between the results of RSA and THA on the simplified manyfold model evaluated for the analysis of the actual manifold. Because THA is impossible in case of real complex structure such as a manifold, Safety of the actual manifold structure was accessed by using the RSA and the difference between the results of RSA and THA from the simplified model.

Floor Response Spectra Analysis Including Correlations of Multiple Support Motions (층간의 상관관계를 고려한 다중 층응답스펙트럼 해석)

  • 윤정방;현창헌;공재식;윤재석
    • Computational Structural Engineering
    • /
    • v.6 no.4
    • /
    • pp.67-72
    • /
    • 1993
  • This paper deals with the response spectra analysis method of the secondary structures including the correlation effect between the nonuniform multiple support excitations. Based on the random vibration theory, the multiple floor response spectra and the cross-correlation coefficient spectra of the floor motions are derived from the design ground response spectra. The example analysis results show that the proposed method yields more accurate results than those by the conventional multiple floor response spectra method without the correlation effects of the support motions. The present method may be easily employed in the seismic design of the secondary structures in engineering practice.

  • PDF

Response Spectrum Analysis of Floor Structure Subjected to Group Dynamic Loads (복수의 동적하중을 받는 바닥판 구조물의 응답스펙트럼 해석)

  • Kim, Tae-Ho;Han, Duck-Jeon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.8 no.1
    • /
    • pp.57-67
    • /
    • 2008
  • In general, the response spectrum analysis(RSA) method is wifely used for seismic analysis of building structures, and the time history analysis(THA) is applied for computation of structural vibration caused by equipments, machines and moving loads, etc. However, compared with the RSA method, the THA method is very complex, difficult and time consuming. In this study, the maximum responses for the vertical vibration are calculated conveniently by the RSA method. At first, the process for the RSA in excitation is proposed, and the maximum modal responses are combined by CQC and SRSS methods. Also, the responses obtained by the two modal combination methods are compared to the responses by the THA. And the correlation coefficients for human activities is proposed, and the RSA responses obtained by used to the correlation coefficients are calculated. Finally, results of the proposed method are compared with those of the time history analysis and correlation coefficients should be considered for the RSA of floor structure subjected to group dynamic loads.

  • PDF

The Properties of a Nonlinear Direct Spectrum Method for Estimating the Seismic Performance (내진성능평가를 위한 비선형 직접스펙트럼법의 특성)

  • 강병두;김재웅
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.4
    • /
    • pp.65-73
    • /
    • 2002
  • It has been recognized that the damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the nonlinear response is required. The methods available to the design engineer today are nonlinear time history analyses, monotonic static nonlinear analyses, or equivalent static analyses with simulated nonlinear influences. Some building codes propose the capacity spectrum method based on the nonlinear static analysis(pushover analysis) to determine the earthquake-induced demand given by the structure pushover curve. These procedures are conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method(NDSM) to evaluate seismic performance of structures, without iterative computations, given by the structural initial elastic period and yield strength from the pushover analysis, especially for MDF(multi degree of freedom) systems. The purpose of this paper is to investigate the accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters. The conclusions of this study are as follows; 1) NDSM is considered as practical method because the peak deformations of nonlinear system of MDF by NDSM are almost equal to the results of nonlinear time history analysis(NTHA) for various ground motions. 2) When the results of NDSM are compared with those of NTHA. mean of errors is the smallest in case of post-yielding stiffness factor 0.1, static force by MAD(modal adaptive distribution) and unloading stiffness degradation factor 0.2~0.3.

다지지 배관계통의 내진해석

  • 이범수;김용성
    • Journal of the KSME
    • /
    • v.24 no.3
    • /
    • pp.188-192
    • /
    • 1984
  • 다지지 배관계통에 대한 이론적인 내진해석방법을 살펴보고 두 가지의 해석모델에 대하여 단응답스펙트럼에 의한 방법과 다응답스펙트럼에 의한 방법으로 내진해석을 수행하여 그 결과를 비교검토하였다.

  • PDF

스펙트럼 선윤곽의 도플러 해석

  • Kim, Gap-Seong;Sim, Gyeong-Jin;Park, Yeong-Deuk;Yun, Hong-Sik
    • Publications of The Korean Astronomical Society
    • /
    • v.6 no.1
    • /
    • pp.16-26
    • /
    • 1991
  • 스펙트럼선의 선폭증대 현상을 방출영역 내 기체입자들이 열운동에 의한 단순 도플러 효과로 가정하여 중심에서 어느 한쪽으로 심하게 치우친 스펙트럼 선윤곽를 해석한다. 본 연구에서는 태양활동영역에서 흔히 관측되는 좌우 비대칭의 선윤곽을 서로 다른 가우스속도분포의 기체성분들이 시선방향으로 중첩된 결과라 해석하고, 최소자승법을 이용한 비선형 선윤곽 맞춤질에 의해 스펙트럼 방출영역에서 떨어져 나가는 기채들의 온도 및 분출속도에 관련된 도플러선폭과 도플러이동량을 구하였다.

  • PDF

Propose of Capacity Spectrum Method by Nonlinear Earthquake Response Analysis (질점계 비선형 지진응답해석에 의한 구조물의 역량스펙트럼 제안)

  • You, Jin-Sun;Yang, Won-Jik;Yi, Waon-Ho;Kim, Hyoung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.501-508
    • /
    • 2014
  • In this paper, a method on deducing the capacity spectrum based on nonlinear earthquake response analysis will be introduced. Damage assessment of general building draws the capacity spectrum through the Push-over analysis and the intersection point of capacity spectrum and demand spectrum is seen as performance point. Push-over analysis is the way to perform static analysis by using the equivalent static load changed from the effect of earthquake and predict the behavior of structures by earthquake. But, this method can not be taken into account in the effects of higher mode and the dynamic characteristic. Therefore, in order to calculate the capacity spectrum under dynamic properties of building. A capacity spectrum from going ahead with the nonlinear earthquake response analysis is suggested.

Parameter Analysis of the Seismic Fragility Function for URM Buildings Using Capacity Spectrum Analysis (역량스펙트럼 해석에 의한 비보강 조적조 건축물의 지진취약도함수 매개변수 분석)

  • Lee, Jung-Han;Park, Min-Kyu;Kim, Hye-Won;Jung, Woo-Young;Park, Byung-Cheol;Yi, Waon-Ho
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2009.04a
    • /
    • pp.383-386
    • /
    • 2009
  • 본 연구는 HAZUS에서 제시하고 있는 비보강 조적조 건축물의 구조적 손상상태에 대한 지진취약도함수와 관련하여 층간변위율 및 스펙트럼 변위 등의 매개변수를 평가하고 또한 국내 상황에 적합한 기존 비보강 조적조 건축물의 지진취약도곡선의 도출을 목적으로 하였다. 국내 상황을 고려한 지진피해를 추정하기 위하여 먼저 기존 비보강 조적조 건축물의 현황파악 및 지진취약도함수 산출방법을 분석하였다. 일반적으로 HAZUS에서 제시하고 있는 지진취약도함수는 역량스펙트럼을 변환시킨 가속도-변위응답 스펙트럼법을 기본적으로 사용하는 상황으로 국내 기존 비보강 조적조 건축물에 대한 지진취약도함수 개발을 위하여 Midas GEN Ver.741 구조해석프로그램을 사용하여 실제 23개동의 비보강 조적조 건축물을 대상으로 역량스펙트럼 해석을 수행하였다. 연구결과를 통하여 지진취약도함수의 주요 매개변수인 손상상태별 층간변위율 및 스펙트럼 변위를 제시하였다.

  • PDF