• Title/Summary/Keyword: 스펙트럼 모델링

Search Result 217, Processing Time 0.03 seconds

2.4kbps Speech Coding Algorithm Using the Sinusoidal Model (정현파 모델을 이용한 2.4kbps 음성부호화 알고리즘)

  • 백성기;배건성
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.123-126
    • /
    • 2000
  • STC(Sinusoidal Transform Coding) 방식은 음성신호의 주파수 영역에서 스펙트럼 피크치들을 정현파로 모델링하여 합성하는 방식을 말한다. 저전송률 STC 방식에서는 전송되는 정보량을 줄이기 위해 스펙트럼 피크를 대신해 음성신호의 스펙트럼 포락선 정보와, 피치정보를 이용하여 얻어지는 고조파 성분들을 정현파로 모델링하여 음성을 합성한다. 본 논문에서는 음성신호의 정현파 모델에 기반하여 2.4kbps 전송속도를 갖는 음성부호화 알고리즘을 제안하였으며, 실험결과로 합성음의 파형과 스펙트럼 특성, 위상특성, 그리고 MOS(Mean Opinion Score) 테스트를 이용한 합성음의 음질을 비교/분석 하였다.

  • PDF

해상환경에서 부표의 안테나 높이에 따른 LoS와 NLos에 관한 연구

  • 이경제;김동구
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.37-38
    • /
    • 2021
  • 해상에서의 통신은 파도의 움직임에 의해 내륙에서의 통신에 비해 어려움이 있다. 본 논문에서는 Bretschneider 스펙트럼 모델을 이용하여 Open-Ocean에서의 파도의 움직임을 모델링다. 내륙에 위치한 기지국과 내륙으로부터 일정 거리 떨어진 해상에 위치한 부표와의 해상통신 환경을 고려하였으며, 모델링한 파도의 움직임을 바탕으로 부표부터 기지국까지의 거리에 대한 각도와 기지국부터 Block되어 Non-Line of Site(NLoS)된 지점까지의 거리에 대한 각도를 비교함으로써 Continuous-LoS(CLoS)구간을 확보하기 위해 파고 대비 안테나의 높이를 변경하며 비교했다.

  • PDF

High Resolution AR Spectral Estimation by Principal Component Analysis (Principal Componet Analysis에 의한 고 분해능 AR 모델링과 스텍트럼 추정)

  • 양흥석;이석원;공성곤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.813-818
    • /
    • 1987
  • In this paper, high resolution spectral estimation by AR modelling and principal comonent analysis is proposed. The given data can be expanded by the eigenvectors of the estimated covariance matrix. The eigenspectrum is obtained for each eigenvector using the Autoressive(AR) spectral estimation technique. The final spectrum estimate is obtained by weighting each eigenspectrum with the corresponding eigenvalue and summing them. Although the proposed method increases in computational complexity, it shows good frequency resolution especially for short data records and narrow-band data whose signal-to-noise ratio is low.

Parameter extraction using the ASE spectrum Modelling for various DFB-type LDs (여러 가지 형태의 DFB 유형 레이저의 ASE 스펙트럼 모델링과 파라메터 추출)

  • Chae Gyoo-Soo;Kim Min-Nyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.1
    • /
    • pp.46-51
    • /
    • 2006
  • We present simulation results for a method designed to extract key parameter values of DFB-type LDs based on ASE spectrum measurements. Comparisons were made between the given (actual) and the extracted (estimated) parameters, as well as the associated spectra, fur a variety of DFB-type LDs, and the two sets of results were found to be in excellent agreement.

  • PDF

The Modeling and Simulation for Pseudospectral Time-Domain Method Synthetic Environment Underwater Acoustics Channel applied to Underwater Environment Noise Model (수중 환경 소음 모델이 적용된 의사 스펙트럼 시간영역 법 합성환경 수중음향채널 모델링 및 시뮬레이션)

  • Kim, Jang-Eun;Kim, Dong-Gil;Han, Dong-Seog
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.3
    • /
    • pp.15-28
    • /
    • 2016
  • It is necessary to analyze underwater acoustics channel(UAC) modeling and simulation for underwater weapon system development and acquisition. In order to analyze UAC, there are underwater acoustics propagation numerical analysis models(Ray theory, Parabolic equation, Normal-mode, Wavenumber integration). However, If these models are used for multiple frequency signal analysis, they are inaccurate to calculate result of analysis effectiveness and restricted for signal processing and analysis. In this paper, to overcome this problem, we propose simple/multiple frequency signal analysis model of the Pseudospectral Time-Domain Method synthetic environment UAC applied to underwater environment noise model as like as realistic underwater environment. In order to confirm the validation of the model, we performed the 9 scenarios simulation(4 scenarios of single frequency signal, 4 scenarios of multiple frequency signal, 1 scenario of single/multiple frequency signal like submarine radiated noise) for validation and confirmed the validation of this model through the simulation model.

Baleen Whale Sound Synthesis using a Modified Spectral Modeling (수정된 스펙트럴 모델링을 이용한 수염고래 소리 합성)

  • Jun, Hee-Sung;Dhar, Pranab K.;Kim, Cheol-Hong;Kim, Jong-Myon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.1
    • /
    • pp.69-78
    • /
    • 2010
  • Spectral modeling synthesis (SMS) has been used as a powerful tool for musical sound modeling. This technique considers a sound as a combination of a deterministic plus a stochastic component. The deterministic component is represented by the series of sinusoids that are described by amplitude, frequency, and phase functions and the stochastic component is represented by a series of magnitude spectrum envelopes that functions as a time varying filter excited by white noise. These representations make it possible for a synthesized sound to attain all the perceptual characteristics of the original sound. However, sometimes considerable phase variations occur in the deterministic component by using the conventional SMS for the complex sound such as whale sounds when the partial frequencies in successive frames differ. This is because it utilizes the calculated phase to synthesize deterministic component of the sound. As a result, it does not provide a good spectrum matching between original and synthesized spectrum in higher frequency region. To overcome this problem, we propose a modified SMS that provides good spectrum matching of original and synthesized sound by calculating complex residual spectrum in frequency domain and utilizing original phase information to synthesize the deterministic component of the sound. Analysis and simulation results for synthesizing whale sounds suggest that the proposed method is comparable to the conventional SMS in both time and frequency domain. However, the proposed method outperforms the SMS in better spectrum matching.

Chemometric Analysis of 2D Fluorescence Spectra for Monitoring and Modeling of Fermentation Processes (생물공정 모니터링 및 모델링을 위한 2차원 형광스펙트럼의 다변량 분석)

  • Kang Tae-Hyoung;Sohn Ok-Jae;Kim Chun-Kwang;Chung Sang-Wook;Rhee Jong-Il
    • KSBB Journal
    • /
    • v.21 no.1 s.96
    • /
    • pp.59-67
    • /
    • 2006
  • 2D spectrofluorometer produces many spectral data during fermentation processes. The fluorescence spectra are analyzed using chemometric methods such as principal component analysis (PCA), principal component regression (PCR) and partial least square regression (PLS). Analysis of the spectral data by PCA results in scores and loadings that are visualized in score-loading plots and used to monitor a few fermentation processes by S. cerevisae and recombinant E. coli. Two chemometric models were established to analyze the correlation between fluorescence spectra and process variables using PCR and PLS, and PLS was found to show slightly better calibration and prediction performance than PCR.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks I - Classification of Fluorescence Spectra using Self-Organizing Maps - (인공신경망에 의한 생물공정에서 2차원 형광스펙트럼의 분석 I - 자기조직화망에 의한 형광스펙트럼의 분류 -)

  • Lee Kum-Il;Yim Yong-Sik;Kim Chun-Kwang;Lee Seung-Hyun;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.291-298
    • /
    • 2005
  • Two-dimensional (2D) spectrofluorometer is often used to monitor various fermentation processes. The change in fluorescence intensities resulting from various combinations of excitation and emission wavelengths is investigated by using a spectra subtraction technique. But it has a limited capacity to classify the entire fluorescence spectra gathered during fermentations and to extract some useful information from the data. This study shows that the self-organizing map (SOM) is a useful and interpretative method for classification of the entire gamut of fluorescence spectral data and selection of some combinations of excitation and emission wavelengths, which have useful fluorometric information. Some results such as normalized weights and variances indicate that the SOM network is capable of interpreting the fermentation processes of S. cerevisiae and recombinant E. coli monitored by a 2D spectrofluorometer.

An Efficient Background Modeling and Correction Method for EDXRF Spectra (EDXRF 스펙트럼을 위한 효율적인 배경 모델링과 보정 방법)

  • Park, Dong Sun;Jagadeesan, Sukanya;Jin, Moonyong;Yoon, Sook
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.8
    • /
    • pp.238-244
    • /
    • 2013
  • In energy dispersive X-ray fluorescence analysis, the removal of the continuum on which the X-ray spectrum is superimposed is one of the most important processes, since it has a strong influence on the analysis result. The existing methods which have been used for it usually require tight constraints or prior information on the continuum. In this paper, an efficient background correction method is proposed for Energy Dispersive X-ray fluorescence (EDXRF) spectra. The proposed method has two steps of background modeling and background correction. It is based on the basic concept which differentiates background areas from the peak areas in a spectrum and the SNIP algorithm, one of the popular methods for background removal, is used to enhance the performance. After detecting some points which belong to the background from a spectrum, its background is modeled by a curve fitting method based on them. And then the obtained background model is subtracted from the raw spectrum. The method has been shown to give better results than some of traditional methods, while working under relatively weak constraints or prior information.

Vibration Identification of Gasoline Direct Injection Engine Based on Partial Coherence Function (부분기여도 함수를 이용한 직접분사 가솔린 엔진 부품의 진동원 분석)

  • Chang, Ji-Uk;Lee, Sang-Kwon;Park, Jong-Ho;Kim, Byung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1371-1379
    • /
    • 2012
  • This paper presents a method for estimating the contribution of vibration sources in gasoline direct injection engine parts with a multiple-input system. A partial coherence function was used to identify the cause of the linear dependence indicated by an ordinary coherence function. To apply the partial coherence function to vibration source identification in the powertrain system of a gasoline direct injection engine, a virtual model of a two-input and single-output system is simulated. For the validation of this model, the vibration of the powertrain parts was measured by using triaxial accelerometers attached to the selected vibration sources-a high-pressure pump, fuel rail, injector, and pressure sensor. After calculating the partial coherence between each source based on the virtual model, the vibration contribution of the powertrain system is calculated. This virtual model based on the partial coherence function is implemented to determine the quantitative vibration contribution of each powertrain part.