• 제목/요약/키워드: 스팸탐지 기법

검색결과 21건 처리시간 0.027초

동시출현 단어분석 기반 스팸 문자 탐지 기법 (Coward Analysis based Spam SMS Detection Scheme)

  • 오하영
    • 정보보호학회논문지
    • /
    • 제26권3호
    • /
    • pp.693-700
    • /
    • 2016
  • 스팸 데이터 셋은 통상적으로 공개적으로 구하기 어렵고 기존 연구들은 대부분 스팸 이메일에 초점이 맞춰져 왔기 때문에 스팸 문자 메시지 자체 특성을 분석하는데 한계가 있었다. 스팸 이메일 특성 분석 활용 및 데이터 마이닝 기법 등의 활용을 통한 기존 연구들이 있었지만, 영향력이 높은 단일 단어를 활용한 스팸 문자 탐지 기법에 한정되어 있다는 한계점이 있다. 본 논문에서는 싱가폴 대학교에서 공개적으로 공개한 스팸 문자메시지를 다 각도에서 실험 및 분석하여 스팸 문자의 특성을 밝히고 동시출현 단어분석 기반의 스팸 문자 탐지 기법을 제안한다. 성능평가 결과, 제안하는 기법의 거짓 양성과 거짓 음성이 2%미만임을 보였다.

소셜 네트워크 상에서의 재귀적 네트워크 구조 특성을 활용한 스팸탐지 기법 (Social Network Spam Detection using Recursive Structure Features)

  • 장보연;정시현;김종권
    • 정보과학회 논문지
    • /
    • 제44권11호
    • /
    • pp.1231-1235
    • /
    • 2017
  • 온라인 소셜 네트워크는 정보전파의 용이성 및 파급 영향력이 높지만 이를 악의적으로 활용하기 위한 스패머들이 다수 활동 중이다. 이러한 스패머를 식별하기 위한 스팸 탐지기법 연구가 다양한 분야에서 이루어지고 있지만 스패머들 또한 스팸 내용이나 스팸링크, 활동 주기 등의 특성을 변경하여 탐지를 피하고 있다. 하지만 다른 특성들과 달리 온라인 소셜 네트워크의 고유 네트워크 특성인 링크 특성은 쉽게 변화시키는 어렵다. 따라서 본 논문에서는 이러한 네트워크의 구조적인 특성을 활용하여 스패머를 일반사용자와 구분하는 방법을 제시한다. 즉 일반사용자 노드가 주변 노드와 비슷한 네트워크 특성을 갖는 점에 주목하여 인접 노드를 활용한 재귀적인 구조적 특성을 생성하여 활용함으로써 스패머의 식별확률을 높이고 있다. 이를 검증하기 위한 실험은 트위터의 실제 데이터셋을 Weka 프로그램에 탑재된 랜덤포레스트 알고리즘을 활용하여 측정하였으며, 재귀적인 특성을 활용하지 않는 방법과 기존 제안 알고리즘에 비해 탐지율이 0.82에서 0.90으로 향상됨으로써 제안하는 방법이 스패머를 탐지하는데 효과적임을 제시하고 있다.

딥러닝을 이용한 비정상 문자 조합으로 구성된 스팸 문자 탐지 기법 (A Technique to Detect Spam SMS with Composed of Abnormal Character Composition Using Deep Learning)

  • 김가현 ;유헌창
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.583-586
    • /
    • 2023
  • 대량 문자서비스를 통한 스팸 문자가 계속 증가하면서 이로 인해 도박, 불법대출 등의 광고성 스팸 문자에 의한 피해가 지속되고 있다. 이러한 문제점을 해결하기 위해 다양한 방법들이 연구되어 왔지만 기존의 방법들은 주로 사전 정의된 키워드나 자주 나오는 단어의 출현 빈도수를 기반으로 스팸 문자를 검출한다. 이는 광고성 문자들이 시스템에서 자동으로 필터링 되는 것을 회피하기 위해 비정상 문자를 조합하여 스팸 문자의 주요 키워드를 의도적으로 변형해 표현하는 경우에는 탐지가 어렵다는 한계가 있다. 따라서, 본 논문에서는 이러한 문제점을 해결하기 위해 딥러닝 기반 객체 탐지 및 OCR 기술을 활용하여 스팸 문자에 사용된 변형된 문자열을 정상 문자열로 복원하고, 변환된 정상 문자열을 문장 수준 이해를 기반으로 하는 자연어 처리 모델을 이용해 스팸 문자 콘텐츠를 분류하는 방법을 제안한다. 그리고 기존 스팸 필터링 시스템에 가장 많이 사용되는 키워드 기반 필터링, 나이브 베이즈를 적용한 방식과의 비교를 통해 성능 향상이 이루어짐을 확인하였다.

향상된 Multi Gray-Leveling을 통한 VoIP 스팸 탐지 기법 (A Scheme of VoIP Spam Detection Using Improved Multi Gray-Leveling)

  • 채강석;정수환
    • 한국통신학회논문지
    • /
    • 제37권8B호
    • /
    • pp.630-636
    • /
    • 2012
  • 본 논문은 VoIP 환경에서 Call 스팸 대응 방법으로 제안된 Multi Gray-Leveling 기법에서 존재하는 오류를 감소시킨 향상된 Multi Gray-Leveling 기법을 제안한다. 기존 Multi Gray-Leveling 기법은 두 개의 다른 시간 주기를 두고 송신자의 호 연결시간 간격을 체크하여 스팸 가능성을 판단함으로 공격자의 호 연결시간 간격 조절을 통한 탐지 회피 가능성을 제한하는 장점이 있으나, 긴 주기의 설정에 따라서 정상 사용자도 스패머로 오판하는 가능성이 존재한다. 본 논문에서는 이러한 오류를 방지하기 위해서 발신자의 행동 패턴뿐만 아니라 수신자의 행동 패턴까지 활용한 향상된 Multi Gray-Leveling 기법을 제안한다. 제안 기법은 사용자의 직접적인 개입이 필요하지 않고, VoIP 서비스 제공자 데이터베이스의 수신자 통화 정보를 이용하여 손쉽게 계산이 가능한 장점을 가지고 있기 때문에 실효성 있는 VoIP 스팸 탐지 방법으로 활용될 수 있다.

소셜 네트워크 기반 대량의 SMS 스팸 데이터 재구성 기법 (A Re-configuration Scheme for Social Network Based Large-scale SMS Spam)

  • 정시현;노기섭;오하영;김종권
    • 정보과학회 논문지
    • /
    • 제42권6호
    • /
    • pp.801-806
    • /
    • 2015
  • SMS는 현대 통신 수단 중 가장 많이 사용되고 있는 방법 중 하나로서, 그 사용 비용이 저렴해짐에 따라 SMS에서의 스팸도 함께 증가하였다. SMS 스팸을 탐지하는 연구들은 부득이하게 사용자의 발신번호, 수신번호 및 SMS내용 등의 즉 개인정보를 필요로 하게 된다는 점에서 데이터 수집 측면에서 큰 한계를 가지고 있다. 더욱이, 소셜 네트워크가 활성화됨에 따라 SMS 스팸들은 더욱 지능화되고 있으며 결과, SMS 스팸 탐지 기법 연구 수행시 해당 SMS관련 개인정보는 물론 사용자의 소셜 네트워크 관련 정보까지 필요로 한다. 따라서, 본 논문에서는 SMS 스팸을 탐지하기 위해 필요한 소셜 네트워크 데이터 셋을 사생활 침해 문제 없이 실제와 유사하게 재구성해주는 SBSS(Social network Building Scheme for SMS spam detection) 기법을 제안한다. 또한, 현재 존재하는 SMS 스팸의 공격 유형을 처음으로 구체화하고 분류하여 이를 반영했다.

단일 문서의 특징 분석을 이용한 스팸 분류 방법 (Spam Classification by Analyzing Characteristics of a Single Web Document)

  • 심상권;이수원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2014년도 추계학술발표대회
    • /
    • pp.845-848
    • /
    • 2014
  • 블로그는 인터넷에서 개인의 정보나 의견을 표출하고 커뮤니티를 형성하는데 사용되는 중요한 수단이나, 광고 유치, 페이지 순위 올리기, 쓰레기 데이터 생성 등 다양한 목적을 가진 스팸블로그가 생성되어 악용되기도 한다. 본 연구에서는 이러한 문제를 해결하기 위해 웹 문서에서 나타나는 특징들을 이용한 스팸 탐지 기법을 제안한다. 먼저 블로그 본문의 길이, 태그의 비율, 태그 수, 이미지 수, 랭크의 수 등 하나의 웹 문서에서 추출할 수 있는 특징을 기반으로 각 문서에 대한 특징 벡터를 생성하고 기계학습을 통해 모델을 생성하여 스팸 블로그를 판별한다. 제안 방법의 성능 평가를 위해 블로그 포스트 데이터를 사용하여 제안방법과 기존의 스팸 분류 연구를 비교 실험을 진행하였다. Bayesian 필터링 기법을 사용하는 기존연구와 비교 실험 결과, 제안방법이 더 좋은 정확도를 가지면서 특징 추출 속도 및 메모리 사용 효율성을 보였다.

앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지 (Ensemble Machine Learning Model Based YouTube Spam Comment Detection)

  • 정민철;이지현;오하영
    • 한국정보통신학회논문지
    • /
    • 제24권5호
    • /
    • pp.576-583
    • /
    • 2020
  • 이 논문은 최근 엄청난 성장을 하고 있는 유튜브의 댓글 중 스팸 댓글을 판별하는 기법을 제안한다. 유튜브에서는 광고를 통한 수익 창출이 가능하기 때문에 인기 동영상에서 자신의 채널이나 동영상을 홍보하거나 영상과 관련 없는 댓글을 남기는 스패머(spammer)들이 나타났다. 유튜브에서는 자체적으로 스팸 댓글을 차단하는 시스템을 운영하고 있지만 여전히 제대로 차단하지 못한 스팸 댓글들이 있다. 따라서, 유튜브 스팸 댓글 판별에 대한 관련 연구들을 살펴 보고 인기 동영상인 싸이, 케이티 페리, LMFAO, 에미넴, 샤키라의 뮤직비디오 댓글 데이터에 6가지 머신러닝 기법(의사결정나무, 로지스틱 회귀분석, 베르누이 나이브 베이즈, 랜덤 포레스트, 선형 커널을 이용한 서포트 벡터 머신, 가우시안 커널을 이용한 서포트 벡터 머신)과 이들을 결합한 앙상블 모델로 스팸 탐지 실험을 진행하였다.

URL 리다이렉션 스팸 탐지 기법 (Detecting Method for URL Redirection Spam)

  • 백지현;김성권
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2007년도 가을 학술발표논문집 Vol.34 No.2 (D)
    • /
    • pp.540-544
    • /
    • 2007
  • 인터넷의 급속한 성장은 사람들의 정보 습득 방식에 큰 변화를 주었다. 인터넷 이용자들은 과거와 비교도 할 수 없을 만큼의 많은 지식을 손쉽게 접할 수 있게 되었다. 하지만, 그로 인해 여러 가지 문제점들이 생겨나게 됐는데, 웹 스팸도 그 중 하나이다. 웹 스팸은 웹을 통한 불법적인 활동으로 이득을 보려는 활동을 통칭할 수 있다. 웹 스팸은 검색 엔진 결과 리스트의 순위를 올리기 위해 사용되는 것이 대부분이지만, 점점 검색 엔진 결과 리스트의 순위와 관련 없는 것들에서도 나타나 생겨나고 있다. 웹 스팸은 종류도 다양할뿐더러, 아직까지 모든 웹 스팸을 예방할 확실한 방법이 제시되지 못하고 있다. 이 논문에서는 여러 웹 스팸 중 페이지-하이딩 스팸에 속하는 URL 리다이렉션에 대해 다루고자 한다. 다른 웹 스팸과 마찬가지로, 현재까지 자동적으로 URL 리다이렉션을 탐지하는 방법이 제시되지 못하고 있는 실정이다. 이 논문에서는 검색 엔진 결과 리스트의 순위를 사용하여 URL 리다이렉션을 탐지 기법을 제안하고자 한다.

  • PDF

스팸메일 방지를 위한 MDA의 필터링방법 개선방안 (An improvement of MDA(Mail Delivery Agent) Filtering method for prevention of spam mail)

  • 박은옥;김영현;최은정;유주영;김미애;박유미;김윤정;김명주
    • 한국정보보호학회:학술대회논문집
    • /
    • 한국정보보호학회 2003년도 동계학술대회
    • /
    • pp.259-263
    • /
    • 2003
  • 인터넷 이용자가 증가함에 따라 전자메일 사용자도 증가하고 있다. 전자메일 사용으로 통신상의 비용 및 시간이 절약되는 장점이 있지만 소수의 유저들이 상업적 목적으로 많은 유저에게 원하지 않은 메일(스팸메일)을 보냄으로써 물질적, 정신적 피해를 입히고 있다. 따라서 스팸 메일을 방지하기 위한 여러 기법들이 제안되었다. 본 논문에서는 스팸 메일 문제를 해결하기 위해 먼저 전자메일 시스템에 대한 구조를 살펴보고 MTA, MDA를 이용하는 스팸 메일 필터링 도구들을 비교 분석한 연구결과를 제시한다. 그리고 탐지 성능을 개선할 수 있는 새로운 방안을 제시한다. 제안 방법은 공개 배포용 MDA인 procmail에 기반한 것으로, 규칙(rule)을 매칭(matching)시키는 시간을 줄이는 것이다.

  • PDF

확률 분포와 추론에 의한 이메일 분류 및 정리 방법 (Classification and Allocation method of e-mail using possibility distribution and prediction)

  • 고남현;김지윤;최만규
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2016년도 제54차 하계학술대회논문집 24권2호
    • /
    • pp.95-96
    • /
    • 2016
  • 본 논문에서는 디리클레 분포와 베이즈 추론 모델을 활용하여 전자우편을 분류하고 정리하는 방법을 제안한다. 과거 원치 않는 광고성 이메일인 스팸 탐지에서 시작한 전자우편 분류는 지속적인 송수신 량의 증가와 내용의 다양화로 인해 광고성과 정보성의 판단 기준이 모호해진 상태이다. 스팸 탐지와 같은 이분법적 분류 방식이 아닌 내용의 주제 별로 자동 분류할 수 있는 방법이 필요하다. 본 논문에서 다루는 제안 기법은 전자우편의 내용에서 다뤄질 수 있는 주제의 종류를 예측하기 위한 방법을 제공한다. 발신하거나 수신된 전자우편이 속한 주제를 자동으로 정할 수 있다. 본 제안 기법의 활용을 통해 전자우편의 분류만이 아닌 업무 및 시장 동향 분석과 정보보안 분야에서는 악성코드 분류에 사용될 수 있을 것으로 기대된다.

  • PDF