• 제목/요약/키워드: 스팸메시지

Search Result 44, Processing Time 0.021 seconds

Spam Message Filtering for Internet Communities using Collection and Frequency Analysis (수집과 빈도 분석을 이용한 인터넷 게시판의 스팸 메시지 차단 방법)

  • Kim, Tae-Hee;Kang, Moon-Seol
    • The KIPS Transactions:PartC
    • /
    • v.18C no.2
    • /
    • pp.61-70
    • /
    • 2011
  • Even though internet community is becoming the basic communication tool with rapidly changing internet environment, its damage is on the rise due to increasing spam messages of unspecified individuals. Currently, various methods to block spam mails, but studies on block spam messages from being automatically posted in community are still insufficient. This study suggested methods to block spam messages in internet community by collecting spam messages posted in internet community to analyze characteristics and frequencies of the messages and create block regulations. It collects spam messages of all messages saved in database of internet community, analyze the collected messages to create normalized rules that can define spam messages, and inspect spam messages among posted messages by using the regulations to block them. The suggested method has a structure that can block various types of spam messages by using information of spam messages collected and flexibly deal with changing spam message types.

Multimedia Message Service(MMS) Spam Image Filtering System (Multimedia Message Service(MMS)상에서 전송되는 스팸이미지 필터링 시스템)

  • Park, Young-Man
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.933-935
    • /
    • 2014
  • 휴대전화 사용의 대중화로 인하여 개개인의 휴대전화로 수신되는 스팸메시지의 양도 덩달아 증가하게 되었다. 이것은 휴대전화 사용자가 불법광고 노출의 원인이 되고 있다. 이에 많은 스팸메시지 차단기법이 제시되었지만 이는 텍스트기반의 문자메시지에 특화되어있어 문자가 포함되어있는 이미지스팸에는 차단이 어렵다는 문제점이 존재 한다. 이에 본 논문에서는 휴대전화로 오는 이미지메시지 중 스팸이미지를 검출해 내는 모바일 스팸이미지 필터링 시스템을 제시하고자 한다. 제시하고자 하는 시스템은 스팸이미지를 분석하여 이미지의 패턴을 검사하여 특정 패턴이 포함된 이미지에 대해서 스팸이미지로 분류하여 필터링하게 됨으로써, 실제 휴대전화로 수신되는 스팸이미지를 이용한 실험을 진행하였다. 그 결과 기존 텍스트기반 스팸필터링시스템에서 할 수 없었던 스팸이미지 필터링을 할 수 있음을 확인 하였다.

Implementation of A Mobile Application for Spam SMS Filtering Using Set-Based POI Search Algorithm (집합 기반 POI 검색 알고리즘을 활용한 스팸 메시지 판별 모바일 앱 구현)

  • Ahn, Hye-yeong;Cho, Wan-zee;Lee, Jong-woo
    • Journal of Digital Contents Society
    • /
    • v.16 no.5
    • /
    • pp.815-822
    • /
    • 2015
  • By the growing of SMS phishing victims, applications for processing spam messages are being released in succession. However most spam messages that cleverly modified the content like separating the consonants and vowels are fail to be filtered. In this paper, we implemented an application 'AntiSpam' which is able to identify spam strings in the text message to solve this problem. 'AntiSpam' searches spam strings in the text message by using set-based POI search algorithm, and then calculate the possibility of whether it is spam or not in accordance with the search results. In addition, it catches skillfully disguised spam messages in order to avoid missing the spam filtering. Users, who received a message, can check the result in spam message possibility decision result and the contents of the message and they can choose how to handling the message.

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

Spam Text Filtering by Using Sen2Vec and Feedforward Neural Network (문장 벡터와 전방향 신경망을 이용한 스팸 문자 필터링)

  • Lee, Hyun-Young;Kang, Seung-Shik
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.255-259
    • /
    • 2017
  • 스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.

  • PDF

Spam Message Filtering with Bayesian Approach for Internet Communities (베이지안을 이용한 인터넷 커뮤니티 상의 유해 메시지 차단 기법)

  • Kim, Bum-Bae;Choi, Hyoung-Kee
    • The KIPS Transactions:PartC
    • /
    • v.13C no.6 s.109
    • /
    • pp.733-740
    • /
    • 2006
  • Spam Message has been Causing widespread damages on the Internet. One source of the problems is rooted from an anonymously posted message in the bulletin board in Internet communities. This type of the Spam messages tries to advertise products, to harm other's reputation, to deliver religious messages and so on. In this paper we present the Spam message filtering using the Bayesian approach. In order to increase usefulness of the Spam filter in the bulletin board in Internet communities, we made the Spam filter which can divide the Spam message into six categories such as advertisement, pornography, abuse, religion and other. The test conducted against messages posted on the popular web sites.

A Method for Spam SMS Filtering Using Bayesian Network and Multi Layer Perceptron (베이지안 네트워크와 멀티 레이어 퍼셉트론을 이용한 모바일 스팸 문자 메시지 필터링 방법)

  • Hong, Seung-Beom;Kim, Moon-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2011.11a
    • /
    • pp.283-286
    • /
    • 2011
  • 스팸 메시지는 불특정 다수에게 보내지는 광고성 메시지로서 최근 들어 그 양이 증가하고 있는 추세이다. 본 논문에서는 모바일 환경에서의 스팸 메시지 필터링을 위한 시스템을 제안하며 기존 환경에서 자주 사용되었던 키워드 기반 필터링 시스템의 단점을 해결하고자 고안되었다. 베이지안 네트워크를 통해 스팸 메시지들의 패턴을 추출하고 추출된 패턴을 멀티 레이어 퍼셉트론을 이용해 학습하여 메시지들을 분류한다. 이 시스템을 통해 약 93.5%의 필터링 정확도률을 얻었으며 키워드 선택 대신 스팸 메시지를 선택해 학습시킴으로서 사용하기 쉽고 사용자에 맞는 시스템을 구성할 수 있었다.

A Spam Message Filter System for Mobile Environment (휴대폰의 스팸문자메시지 판별 시스템)

  • Lee, Songwook
    • Annual Conference on Human and Language Technology
    • /
    • 2010.10a
    • /
    • pp.194-196
    • /
    • 2010
  • 휴대폰의 광범위한 보급으로 문자메시지의 사용이 급증하고 있다. 이와 동시에 사용자가 원하지 않는 광고성 스팸문자도 넘쳐나고 있다. 본 연구는 이러한 스팸문자메시지를 자동으로 판별하는 시스템을 개발하는 것이다. 우리는 기계학습방법인 지지벡터기계(Support Vector Machine)을 사용하여 시스템을 학습하였으며 자질의 선택은 카이제곱 통계량을 이용하였다. 실험결과 F1 척도로 약 95.5%의 정확률을 얻었다

  • PDF

A SVM-based Spam Filtering System for Short Message Service (SMS) (휴대폰 SMS를 위한 SVM 기반의 스팸 필터링 시스템)

  • Joe, In-Whee;Shim, Hye-Taek
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.908-913
    • /
    • 2009
  • Mobile phones became important household appliance that cannot be without in our daily lives. And the short messaging service (SMS) in these mobile phones is 1.5 to 2 times more than the voice service. However, the spam filtering functions installed in mobile phones take a method to receive specific number patterns or words and recognize spam messages when those numbers or words are present. However, this method cannot properly filters various types of spam messages currently dispatched. This paper proposes a more powerful and more adaptive spam filtering system using SVM and thesaurus. The system went through a process of isolating words from sample data through pro-processing device and integrating meanings of isolated words using a thesaurus. Then it generated characteristics of integrated words through the chi-square statistics and studied the characteristics. The proposed system is realized in a Window environment and the performance is confirmed through experiments.

SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques (워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • Text analysis technique for natural language processing in deep learning represents words in vector form through word embedding. In this paper, we propose a method of constructing a document vector and classifying it into spam and normal text message, using word embedding and deep learning method. Automatic spacing applied in the preprocessing process ensures that words with similar context are adjacently represented in vector space. Additionally, the intentional word formation errors with non-alphabetic or extraordinary characters are designed to avoid being blocked by spam message filter. Two embedding algorithms, CBOW and skip grams, are used to produce the sentence vector and the performance and the accuracy of deep learning based spam filter model are measured by comparing to those of SVM Light.