인터넷 환경의 빠른 발전과 함께 널리 사용되고 있는 인터넷 게시판이 기본적인 의사소통 수단으로 정착되고 있으나, 불특정 다수로부터 게시되는 스팸 메시지의 증가로 피해 규모가 날로 증가하고 있다. 현재 스팸 메일을 차단하기 위한 다양한 차단 방법들이 제안되고 있으나 게시판에 자동으로 등록되고 있는 스팸 메시지를 차단하는 방법에 대한 연구는 미미한 실정이다. 본 논문은 인터넷 게시판에 등록되는 스팸 메시지를 수집하여 메시지의 특성과 빈도를 분석하고 차단 규칙을 생성하여 차단하는 단계로 구성된 게시판 스팸 메시지 차단 방법을 제안하였다. 인터넷 게시판의 데이터베이스에 저장되는 모든 메시지를 대상으로 스팸 메시지를 수집하고, 수집한 스팸 메시지를 분석하여 스팸 메시지를 정의할 수 있는 정규화된 규칙을 생성한 후, 이 규칙을 이용하여 등록된 메시지에 대해 스팸 메시지를 검사하여 차단한다. 제안한 방법은 수집되는 스팸 메시지의 정보를 이용하여 다양한 유형의 스팸 메시지를 차단할 수 있으며, 변화하는 스팸 메시지의 형태에 대해서도 유연하게 대처할 수 있는 구조를 가지고 있다.
휴대전화 사용의 대중화로 인하여 개개인의 휴대전화로 수신되는 스팸메시지의 양도 덩달아 증가하게 되었다. 이것은 휴대전화 사용자가 불법광고 노출의 원인이 되고 있다. 이에 많은 스팸메시지 차단기법이 제시되었지만 이는 텍스트기반의 문자메시지에 특화되어있어 문자가 포함되어있는 이미지스팸에는 차단이 어렵다는 문제점이 존재 한다. 이에 본 논문에서는 휴대전화로 오는 이미지메시지 중 스팸이미지를 검출해 내는 모바일 스팸이미지 필터링 시스템을 제시하고자 한다. 제시하고자 하는 시스템은 스팸이미지를 분석하여 이미지의 패턴을 검사하여 특정 패턴이 포함된 이미지에 대해서 스팸이미지로 분류하여 필터링하게 됨으로써, 실제 휴대전화로 수신되는 스팸이미지를 이용한 실험을 진행하였다. 그 결과 기존 텍스트기반 스팸필터링시스템에서 할 수 없었던 스팸이미지 필터링을 할 수 있음을 확인 하였다.
최근 스미싱 피해가 늘어남에 따라 스팸 메시지 처리를 위한 애플리케이션이 잇달아 출시되고 있다. 그러나 자음과 모음을 분리하는 등 교묘하게 내용이 조작된 스팸 메시지는 필터링하지 못 하는 경우가 대부분이다. 이를 해결하기 위해 본 논문에서는 문자 메시지 내 스팸 문자열을 검사하는 애플리케이션인 안티스팸을 구현하였다. 안티스팸은 집합 기반 POI 검색 알고리즘을 활용하여, 전송된 문자 메시지내에 스팸 문자열이 있는지 검색한 후, 검색 결과에 따라 스팸 여부를 추정한다. 또한 스팸 필터링을 피하기 위해 교묘히 위장된 스팸 메시지도 걸러준다. 사용자는 메시지를 받으면 스팸 판단 결과와 메시지 내용을 확인하고 메시지 처리방식을 선택할 수 있다.
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
스팸 문자 메시지를 표현하는 한국어의 단어 구성이나 패턴은 점점 더 지능화되고 다양해지고 있다. 본 논문에서는 이러한 한국어 문자 메시지에 대해 단어 임베딩 기법으로 문장 벡터를 구성하여 인공신경망의 일종인 전방향 신경망(Feedforward Neural Network)을 이용한 스팸 문자 메시지 필터링 방법을 제안한다. 전방향 신경망을 이용한 방법의 성능을 평가하기 위하여 기존의 스팸 문자 메시지 필터링에 보편적으로 사용되고 있는 SVM light를 이용한 스팸 문자 메시지 필터링의 정확도를 비교하였다. 학습 및 성능 평가를 위하여 약 10만 개의 SMS 문자 데이터로 학습을 진행하였고, 약 1만 개의 실험 데이터에 대하여 스팸 문자 필터링의 정확도를 평가하였다.
스팸의 피해가 이메일 서비스를 넘어 인터넷 전반에 걸쳐 급증하는 현재 인터넷은 익명성을 악용하여 해당 커뮤니티의 공동 관심사와는 무관한 메시지들, 즉 상업적 광고, 상호비방, 종교 홍보 등의 스팸 메시지들을 게재하면서 심각한 사회적 문제를 일으키고 있다. 본고에서는 인터넷 커뮤니티 상의 스팸 메시지를 해결하고자 기존의 스팸 메일 차단에 이용되고 있는 베이지안 접근법을 적용한 인터넷 커뮤니티 상의 스팸 메시지 차단 방법을 소개한다. 나아가 인터넷 커뮤니티 상에서의 스팸 메시지 필터링의 효과를 증대시키기 위한 방편으로 스팸 메시지를 다양한 소분류로 세분화가 가능토록 구성했다 이는 인터넷 커뮤니티의 다양한 이용자의 요구를 충족시키기 위한 방안이다. 구현된 베이지안 필터링 기법은 현재 운영되고 있는 사이트들을 대상으로 정확도를 측정하였다.
스팸 메시지는 불특정 다수에게 보내지는 광고성 메시지로서 최근 들어 그 양이 증가하고 있는 추세이다. 본 논문에서는 모바일 환경에서의 스팸 메시지 필터링을 위한 시스템을 제안하며 기존 환경에서 자주 사용되었던 키워드 기반 필터링 시스템의 단점을 해결하고자 고안되었다. 베이지안 네트워크를 통해 스팸 메시지들의 패턴을 추출하고 추출된 패턴을 멀티 레이어 퍼셉트론을 이용해 학습하여 메시지들을 분류한다. 이 시스템을 통해 약 93.5%의 필터링 정확도률을 얻었으며 키워드 선택 대신 스팸 메시지를 선택해 학습시킴으로서 사용하기 쉽고 사용자에 맞는 시스템을 구성할 수 있었다.
휴대폰의 광범위한 보급으로 문자메시지의 사용이 급증하고 있다. 이와 동시에 사용자가 원하지 않는 광고성 스팸문자도 넘쳐나고 있다. 본 연구는 이러한 스팸문자메시지를 자동으로 판별하는 시스템을 개발하는 것이다. 우리는 기계학습방법인 지지벡터기계(Support Vector Machine)을 사용하여 시스템을 학습하였으며 자질의 선택은 카이제곱 통계량을 이용하였다. 실험결과 F1 척도로 약 95.5%의 정확률을 얻었다
휴대 전화는 이제 우리의 일상생활에서 없어서는 안 될 중요한 가전 기기로 자리 잡았다. 이러는 와중에 휴대폰에서 사용하는 문자 메시지 사용량 역시 꾸준하게 증가하여 현재는 음성 통화 이용량의 1.5배에서 2배에 이르고 있다. 문자 메시지의 사용량이 증가함에 따라 스팸 문자 메시지도 따라서 증가하였는데 기존의 모바일 기기에서의 스팸 필터링 방식은 단순 문자열 비교나 특정 번호 차단과 같은 아주 기초적인 수준으로 스팸 메시지를 필터링하고 있는 실정이다. 본 논문에서는 SVM(Support Vector Machine)과 시소러스(thesaurus) 사전을 이용하여 좀 더 강력하고 적응적인 스팸 필터링 시스템을 제안하였다. 제안한 시스템은 샘플 문자 메시지로부터 전처리 기를 이용하여 문자 메시지 속에 담겨 있는 단어를 추출 한 후, 추출된 단어를 시소러스 사전을 이용하여 해당 의미가 가지는 대표 단어로 변경하였다. 변경된 단어들에서 카이 제곱 통계량을 계산하여 그 값이 높은 단어들을 특징 단어로 선정하였고 선정된 특징 단어들을 가지고 SVM 분류기로 학습을 진행하였다. 그 후 학습된 분류기를 이용하여 테스트 문자 메시지의 스팸 여부를 분류하였으며 평균 92%의 인식률을 보였다. 제안된 시스템은 PC에서 구현되어 있으며 실험을 통하여 그 성능을 확인하였다.
딥러닝에서 자연어 처리를 위한 텍스트 분석 기법은 워드 임베딩을 통해 단어를 벡터 형태로 표현한다. 본 논문에서는 워드 임베딩 기법과 딥러닝 기법을 이용하여 SMS 문자 메시지를 문서 벡터로 구성하고 이를 스팸 문자 메시지와 정상적인 문자 메시지로 분류하는 방법을 제안하였다. 유사한 문맥을 가진 단어들은 벡터 공간에서 인접한 벡터 공간에 표현되도록 하기 위해 전처리 과정으로 자동 띄어쓰기를 적용하고 스팸 문자 메시지로 차단되는 것을 피하기 위한 목적으로 음절의 자모를 특수기호로 왜곡하여 맞춤법이 파괴된 상태로 단어 벡터와 문장 벡터를 생성하였다. 또한 문장 벡터 생성 시 CBOW와 skip gram이라는 두 가지 워드 임베딩 알고리즘을 적용하여 문장 벡터를 표현하였으며, 딥러닝을 이용한 스팸 문자 메시지 필터링의 성능 평가를 위해 SVM Light와 정확도를 비교 측정하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.