• Title/Summary/Keyword: 스파크 플라즈마 소결

Search Result 24, Processing Time 0.039 seconds

Properties of Sr-Ferrites Prepared by Spark Plasma Sintering Process (스파크 플라즈마 소결법으로 제조된 Sr-페라이트의 특성)

  • Roh, J.S.;Oh, M.H.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.1
    • /
    • pp.29-35
    • /
    • 2003
  • Anisotropic Sr-ferrites were prepared by the spark plasma sintering process (SPS). The Ferrite particles were oriented and densified during sintering process, and the anisotropic ferrites were manufactured at low sintering temperature and a remarkable short time processing by SPS method. It was showed that the anisotropy of ferrite particles at the specimen outer side was more higher than that at the specimen center, and it seems possible that the orientation of ferrite particles was related to DC current. Magnetic and physical properties of sintered Sr-ferrites are Br = 3.15 kG, iHc : 2.67 kOe, and density : 5.033 g/cm$^3$ when the samples were sintered for 8 minutes at 106$0^{\circ}C$.

Review of the Sintering Technologies Using In-situ Resources for Lunar Construction and Future Works (달 기지 건설을 위한 현지재료 활용 소결 기술 및 향후 과제)

  • Ryu, Geun U;Kim, Young-Jae;Shin, Hyu-Soung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.12
    • /
    • pp.839-856
    • /
    • 2022
  • Over the last decade, the competition for space development has accelerated. The world's largest space agencies are aiming toward long-term lunar exploration and manned missions. For sustainable and safe lunar exploration, construction of infrastructures that include various habitats is essential. However, transporting construction materials from Earth for lunar base construction is extremely expensive. Thus, technologies for manufacturing construction materials using in-situ resources from the moon should be advanced. The sintering techniques have been actively studied using lunar soil. In this review, five sintering technologies, including radiation, solar, spark plasma, laser, and microwave sintering, for manufacturing construction materials using lunar soil are introduced, and future research is discussed.

Liquid Phase Sintered SiC-30 wt% TiC Composites by Spark Plasma Sintering (스파크 플라즈마 소결에 의한 액상소결 SiC-30 wt% TiC 복합체)

  • 조경식;이광순;송진호;김진영;송규호
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.8
    • /
    • pp.751-757
    • /
    • 2003
  • Rapid densification of a SiC-30 wt% TiC powder with additive 10 wt% A1$_2$O$_3$-Y$_2$O$_3$-CaO was conducted by Spark Plasma Sintering(SPS). The fully-densified materials can be obtain through the SPS process with very fast heating rate and short holding time. In the present work, the heating rate and applied pressure were kept to be $100^{\circ}C$/min and 40 MPa, while sintering temperature varied from $1600^{\circ}C$ to $1800^{\circ}C$ for 10 min. The full densification of SiC-30 wt% TiC composites with the addition of $Al_2$O$_3$, $Y_2$O$_3$ and CaO was achieved at the temperature above $1700^{\circ}C$ by spark plasma sintering. The XRD found that 3C-SiC and TiC were maintained the entire SPS process temperature, without phase transformation of SiC and formation of YAG phase to $1800^{\circ}C$. The microstructures of the rapidly densified SiC-30 wt% TiC composites consisted of smaller equiaxed SiC grains and larger TiC grains. The biaxial strength of 635.2 MPa and fracture toughness of 6.12 MPaㆍ$m^{1/2}$ were found for the specimen prepared at $1750^{\circ}C$.

Computer aided simulation of spark plasma sintering process (Part 1 : formulation) (스파크 플라즈마 소결공정의 전산모사(1부 : 수식화))

  • Keum Y.T.;Jean J.H.
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.16 no.1
    • /
    • pp.38-42
    • /
    • 2006
  • Spark plasma sintering processes have been rapidly introduced recently to improve the quality and productivity of ceramic products and to solve the problem of environmental pollutions. Sintering temperatures and pressing pressures in the spark plasma sintering process are known to be the important factors highly affecting the quality of the ceramics. In this research, in order to see the effects of sintering temperatures and pressing pressures on the grain growth during the spark plasma sintering process of $Al_2O_3$ the grain growth processes associated with sintering temperatures and pressing pressures are simulated by the Monte Carlo method (MCM) and the finite element method (FEM). In this Part 1, the formulations for the simulation, which is the theoretical background of Part 2, are introduced.