• Title/Summary/Keyword: 스팀 터빈

Search Result 64, Processing Time 0.019 seconds

Development of Asynchronous Blocking Algorithm through Asynchronous Case Study of Steam Turbine Generator (스팀터빈 발전기 비동기 투입 사례연구를 통한 비동기 방지 알고리즘 개발)

  • Lee, Jong-Hweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1542-1547
    • /
    • 2012
  • Asynchronous phenomenon occurs on the synchronous generators under power system when a generator's amplitude of electromagnetic force, phase angle, frequency and waveform etc become different from those of other synchronous generators which can follow instantly varying speed of turbine. Because the amplitude of electromagnetic force, phase frequency and waveform differ from those of other generators with which are to be put into parallel operation due to the change of excitation condition for load sharing and the sharing load change, if reactive current in the internal circuit circulates among generators, the efficiency varies and the stator winding of generators are overheated by resistance loss. When calculation method of protection settings and logic for protection of generator asynchronization will be recommended, a distance relay scheme is commonly used for backup protection. This scheme, called a step distance protection, is comprised of 3 steps for graded zones having different operating time. As for the conventional step distance protection scheme, zone 2 can exceed the ordinary coverage excessively in case of a transformer protection relay especially. In this case, there can be overlapped protection area from a backup protection relay and, therefore, malfunctions can occur when any fault occurs in the overlapped protection area. Distance relays and overcurrent relays are used for backup protection generally, and both relays have normally this problem, the maloperation, caused by a fault in the overlapped protection area. Corresponding to an IEEE standard, this problem can be solved with the modification of the operating time. On the other hand, in Korea, zones are modified to cope with this problem in some specific conditions. These two methods may not be obvious to handle this problem correctly because these methods, modifying the common rules, can cause another coordination problem. To overcome asynchronizing protection, this paper describes an improved backup protection coordination scheme using a new logic that will be suggested.

Development of a Vibration Diagnostic System for Steam Turbine Generators (스팀터빈 발전기 진동진단 시스템 개발)

  • Lee, An-Sung;Hong, Seong-Wook;Kim, Ho-Jong;Lee, Hyun
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.543-553
    • /
    • 1995
  • Modern steam turbine generators are being built as a higher power and larger system, experiencing more frequent starts and stops of operation due to a constant change of power demands. Hence, they are inevitably more vulnerable to various vibrations, and more often exposed to the danger of sudden vibration accidents than ever before. Even under the circumstances, in order to secure the system reliability of steampower plants and there by to supply safely the public electricity, it is important to prevent a sudden vibration accident in one hand and even when it happens, to raise an operating efficiency of the plants throught swift and precise treatments in the other. In this study, an interactive vibration diagnostic system has been developed to make the on-site vibration diagnosis of steam turbine generators possible and convenient, utilizing a note-book PC. For this purpose, at first the principal vibration phenomena, such as various unbalance and unstable vibrations as well as rubbing, misalignment, and shaft crack vibrations, have been systematically classified as grouped parameters of vibration frequencies, amplitudes, phases, rotating speeds at the time of accident, and operating conditions or condition changes. A new complex vibration diagnostic table has been constructed from the causal relations between the characteristic parameters and the principal vibration phenomena. Then, the diagnostic system has been developed to screen and issue the corresponding vibration phenomena by assigning to each user-selected combination of characteristic parameters a unique characteristic vector and comparing this vector with a diagnostic vector of each vibration phenomenon based on the constructed diagnostic table. Moreover, the diagnostic system has a logic whose diagnosis may be performed successfully by inputing only some of the corresponding characteristic parameters without having to input all the parameters. The developed diagnostic system has been applied to perform the diagnosis of several real cases of steam turbine vibration accidents. And the results have been quite satisfactory.

  • PDF

The Effect of Temperature on SCC of Heat Exchanger Tube for LNG Vessel (LNG선박 열교환기 세관의 SCC에 미치는 용액의 온도의 영향)

  • Jeong Hae Kyoo;Lim Uh Joh
    • Journal of the Korean Institute of Gas
    • /
    • v.8 no.1 s.22
    • /
    • pp.1-6
    • /
    • 2004
  • In general, inlet temperature of cooling sea water for steam turbine condenser is about $25^{\circ}C$ and outlet temperature is about $60^{\circ}C$. For oil cooler, outlet temperature is about $40^{\circ}C$. Therefore corrosion heavily depends on the temperature of the coolant of a heat exchanger system. It is necessary to set the temperature of the cooling water to have maximum heat transfer efficiency. This paper was studied on the effect of temperature on SCC of Al-brass which is used as a tube material of vessel heat exchanger in $3.5\%$ NaCl + $0.1\%\;NH_4OH$ solution under flow by constant displacement tester. Based on the test results, the behavior of polarization characteristic, stress corrosion crack popagation and dezincification characteristic of Al-brass was investigated.

  • PDF

Tool Design and Numerical Verification for Thick Plate Forming of Hollow-Partitioned Steam Turbine Nozzle Stator (스팀 터빈용 중공 분할형 노즐 정익의 후판 성형을 위한 금형 설계 및 해석적 검증)

  • Kang, B.K.;Kwak, B.S.;Yoon, M.J.;Jeon, J.Y.;Kang, B.S.;Ku, T.W.
    • Transactions of Materials Processing
    • /
    • v.25 no.6
    • /
    • pp.379-389
    • /
    • 2016
  • As a stator for steam turbine diaphragm, hollow-type nozzle stator to substitute for conventional solid one is introduced in this study. This hollowed stator can be separated into two parts such as upper and lower plates with large and curved surface area. This study focuses on thick plate forming process for the upper plate of the hollow-partitioned nozzle stator. First, to reduce forming defects such as under-cut and localized thinning of the deformed plate, and to avoid tool interruption between forming punch and lower die, tool design including the position determination of forming surfaces is performed. Uni-axial tensile tests are carried out using SUS409L steel plate with initial thickness of 5.00mm, and plastic strain ratio (r-value) is also obtained. Due to the asymmetric curved configuration of the upper plate, it is hard to adopt a series of blank holder or draw-bead, so the initial plate during this thick plate forming experiences unstable and non-uniform contact. To easy this forming difficulty and find suitable tool geometry without sliding behavior of the workpiece in the die cavity, two geometric parameters with respect to each shoulder angle of the lower die and the upper punch are adopted. FE models with consideration of 21 combinations for the geometric parameters are built-up, and numerical simulations are performed. From the simulated and predicted results, it is shown that the geometric parameter combinations with ($30^{\circ}$, $90^{\circ}$) and ($45^{\circ}$, $90^{\circ}$) for the shoulder angle of the lower die and the upper punch are suitably applied to this upper plate forming of the hollow-partitioned nozzle stator used for the turbine diaphragm.