• Title/Summary/Keyword: 스틱슬립

Search Result 53, Processing Time 0.024 seconds

Robust Trajectory Control of Robot Manipulators Using Time Delay Estimation and Internal Model Concept (로봇 매니퓰레이터를 위한 시간지연추정과 내부모델개념을 결합한 강인제어기에 관한 연구)

  • Cho Geon Rae;Chang Pyung-Hun;Jung Je Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1075-1086
    • /
    • 2004
  • In this paper, Time Delay Control(TDC) for robot manipulators is analyzed and its problems are founded. In order to remedy the problems, the enhanced controller is proposed and analyzed. The effect of friction associated with TDC is reported and its cause is presented. Through the analysis, simulation and experiment, it is shown that the friction effect causes serious degradation in control performance and that it is a result of the error of Time Delay Estimation(TDE) in TDC. In order to remedy the problems, TDC combined with Internal Model Control(IMC) concept is proposed. The proposed compensator is effective enough to handle the bad effect of friction, and is so simple and efficient as to match positive attribute of TDC. The simulation and experimental results show the effectiveness of proposed controller against the friction of the robot manipulators.

Study on Influence of Spring Constant on Frictional Behavior at the Nanoscale through Molecular Dynamics Simulation (나노스케일 마찰거동에서 스프링 상수가 마찰에 미치는 영향에 대한 분자동역학 연구)

  • Kang, Won-Bin;Kim, Hyun-Joon
    • Tribology and Lubricants
    • /
    • v.37 no.2
    • /
    • pp.77-80
    • /
    • 2021
  • In this study, we investigated the effect of the spring constant on frictional behavior at a nanoscale through molecular dynamics simulation. A small cube-shaped tip was modeled and placed on a flat substrate. We did not apply the normal force to the tip but applied adhesive force between the tip and the substrate. The tip was horizontally pulled by a virtual spring to generate relative motion against the substrate. The controlled spring constant of the virtual spring ranged from 0.3 to 70 N/m to reveal its effect on frictional behavior. During the sliding simulation, we monitored the frictional force and the position of the tip. As the spring constant decreased from 70 to 0.3 N/m, the frictional force increased from 0.1 to 0.25 nN. A logarithmic relationship between the frictional force and spring constant was established. The stick-slip instability and potential energy slope increased with a decreasing spring constant. Based on the results, an increase in the spring constant reduces the probability of trapping in the local minima on the potential energy surface. Thus, the energy loss of escaping the potential well is minimized as the spring constant increases.

Behavior analysis on stick-slip of hydraulic telescopic boom (유압 텔레스코픽 붐의 스틱-슬립에 대한 거동해석)

  • Baek, Il-Hyun;Jung, Jae-Youn;Kim, Shin
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.296-303
    • /
    • 2002
  • Tribology, in other words, interacting surfaces in relative motion, is essential in life. The relative motion on surfaces may cause some problems with heat, vibration, noise, and so on. Unwanted vibrations by friction, which may arise during the operation of machines, are costly in terms of reduction of performance and service life. All these phenomena inolve stick-slip. The telescopic boom operations involves stick-slip oscillations like slideways. Unwanted stick-slip oscillations on telescopic boom operations cannot achieve smooth sliding and many developers of that machine makes a lot of effort to remove or reduce it. So this paper presents stick-slip oscillation with pressure of the hydraulic cylinder which drives booms, and attempts a theoretical approach for the numerical analysis for its stick-slip condition.

  • PDF

Image Quality Evaluation for the Railway Abrasion Measurement with a High Resolution (고해상도 레일 마모도 측정을 위한 영상 평가)

  • Ahn, Sung-Hyuk;Kim, Man-Cheol
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.887-894
    • /
    • 2009
  • There is no standard rule for the test of the railway abrasion measurement system composed of the line laser and the camera. This paper is proposed of the method to estimate the performance of the railway abrasion measurement system. The performance estimation is achieved by the quantitative analysis parameters such as MTF, NPS and DQE.

Influence of Stick-Slip Behavior on the Friction Force under Fretting Conditions (프레팅 조건 하에서 스틱-슬립 현상이 마찰력에 미치는 영향)

  • Lee Young-Ze;Jeong Sung-Hoon;Yong Suk-Ju
    • Tribology and Lubricants
    • /
    • v.21 no.1
    • /
    • pp.16-20
    • /
    • 2005
  • Friction and wear characteristics between two steel surfaces under fretting condition are investigated experimentally. The fretting damage caused by low-amplitude oscillatory sliding can be classified into three regimes of gross-slip, mixed-slip and partial-slip due to stick-slip phenomenon. One of the most important characteristics of fretting wear is the transition from gross-slip to mixed-slip. This study was focused on getting the degree of stick-slip out of the friction transition under fretting condition. Fretting wear is divided into three conditions of gross-slip/mixed-slip/partial-slip. The criteria for the division are friction and displacement amplitude, wear scar morphology and dissipated energy. In this test, friction force and displacement were measured for detecting the transition from mixed-slip to gross-slip and qualitatively predicting the degree of the wear.

Nonlinear analysis of a 4-dof friction induced self-ocsillation system with the friction coefficient of velocity and pressure (속도와 압력의 항의 마찰상수를 갖는 마찰기인 4자유도계 자려진동 시스템의 비선형 해석)

  • Joe, Yong-Goo;Shin, Ki-Hong;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.331.1-331
    • /
    • 2002
  • Four degrees of freedom mathematical model is presented to describe the fundamental mechanisms of the disc brake squeal noise. A contact parameter is introduced to describe the coupling between the in-plane and the out-of-plane motions. The friction coeficient including "relative velocity" and ′normal force" can be generally formulated as the form of multiplication with polynominal parameters(${\beta}$, ${\gamma}$). (omitted)

  • PDF

Comparison of Friction model on the variable DOE system (자유도 변화 시스템의 해석에 사용되는 마찰 모델의 비교)

  • Lee, Chin-Won;Cho, Hyung-Jun;Jang, Wook-Jin;Lim, Won-Sik;Lee, Jang-Moo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.672-677
    • /
    • 2000
  • This paper compares the two kinds of friction model. The first model is classical stick/slip model. In the stick/slip model, the system is treated to have two different states, namely, stick state or slip state. The second one is continuous model developed by Dahl et. al, namely, Extended Dahl's model. Each model has unique properties, and can be best useful when it is applied on the appropriate system. In this paper, each model is applied on the simple two-block system and the complex automatic transmission system. And the simulation result including simulation accuracy and time required are compared.

  • PDF

Squeal Noise Reduction of an Automobile Wiper Blade (자동차용 와이퍼 블레이드의 스퀼소음 저감)

  • Hong, Jun-Gi;Won, Hong-In;Kim, Hyoung-Rae;Yoon, Min-Jae;Chung, Jintai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.5
    • /
    • pp.374-380
    • /
    • 2014
  • This article proposes a design guideline to reduce squeal noise generated by an automobile wiper blade. In order to explain the squeal noise phenomenon, a source of squeal noise is experimentally investigated using a rotating disk equipment, and then a single-degree-of-freedom stick-slip vibration model is established for a blade tip. Based on analytical results, we discuss a tendency of the squeal noise for various physical parameters.

Stick-slip vibration analysis by using statistical friction model and accuracy verification of the friction model (통계적 마찰 모델을 활용한 stick-slip 진동 해석과 정확성 검증)

  • Yoo, Hong Hee;Kang, Won Seok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.830-832
    • /
    • 2014
  • In this study, friction stick-slip vibration're interpretation of the phenomenon, we used a statistical model of friction. In a previous study using a definite friction factor, but to a dynamic simulation using a constantly changing during the integration time by a Monte Carlo simulation method, not the average coefficient of friction and the dynamic friction coefficient and a constant value in this study.

  • PDF

A Study on the Characteristics of an Amplitude Proportional Friction Damper (변위비례식 마찰댐퍼의 특성에 관한 연구)

  • 박동훈;최명진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.717-720
    • /
    • 2002
  • An Amplitude Proportional Friction Damper (APFD) system is considered in order to improve the stick-slip characteristics of Coulomb friction damper. The frictional force is proportional to the amplitude in APFD system and the system is non-linear as is Coulomb damper system. The free vibration analysis on an 1-DOF system has conducted to demonstrate the characteristics of the APFD system and the results show that the APFD system has similar damping characteristics to the viscous damper system. It is concluded that the APFD system may become a cost effective substitution for the viscous damper and it also has certain advantages over Coulomb damper system since the APFD system can be designed to work with no stick-slip.

  • PDF