• Title/Summary/Keyword: 스트론튬

Search Result 143, Processing Time 0.023 seconds

Concentration of Functional Mineral by NF/RO Processes (나노여과/역삼투 공정을 이용한 기능성 미네랄의 농축)

  • Lee, Ho-Won;Moon, Soo-Hyoung;Ko, Kyoung-Soo
    • Membrane Journal
    • /
    • v.19 no.4
    • /
    • pp.277-284
    • /
    • 2009
  • In order to select the most suitable membrane to the concentration of vanadium and silica in groundwater, two different commercial NF membrane modules (NE2540-90 and NF90-2540) and three different commercial RO membrane modules (BW30-2540, RE2540-TE, and XLE-2540) were tested. The membrane characteristics test results showed that NE2540-90 module was the most efficient because of higher permeate flux and similar rejection coefficient. Using NE2540-90 module at the transmembrane pressure of $8\;kgf/cm^2$, it was found that the rejection coefficients of vanadium, silica, aluminium, chromium, iron, boron, strontium, and barium were 98.2%, 99.0%, 92.0%, 83.6%, 96.0%, 45.1%, 98.6%, and 69.5%, respectively. It was possible that vanadium and silica contents of groundwater were concentrated into $148.9\;{\mu}g/L$ and 85.8 mg/L respectively by six-stages NF process at the recovery ratio of 15%. The waters produced by NF, which are enriched in vanadium and silica content, are expected to be commercialized the various functional mineral waters.

The Photoluminescence Characteristic of Ba2-xSrxSiO4:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis (분무열분해 공정에 의해 제조된 Ba2-xSrxSiO4:Eu2+ 형광체의 발광특성)

  • Kang, Hee Sang;Park, Seung Bin;Koo, Hye Young;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.609-613
    • /
    • 2006
  • Ba2-xSrxSiO4:Eu2+ phosphor particles with the high photoluminescence (PL) intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis. The photoluminescence, morphological and crystalline characteristics of $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis were investigated. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis had various colors from bluish green to yellow by changing the ratio of barium and strontium of the host material. In case of x=0, the main emission peak of $Ba_2SiO_4:Eu^{2+}$ phosphor was 500 nm. In case of x=2, the main emission peak of $Sr_2SiO_4:Eu^{2+}$ phosphor was 554nm. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles obtained by spray pyrolysis had spherical shape and hollow structure. On the other hand, the post-treated $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles had large size and irregular shape. The $Ba_{1.488}Sr_{0.5}SiO_4:Eu_{0.012}{^{2+}}$ phosphor particles had the maximum PL intensity after post-treatment at temperature of $1300^{\circ}C$ for 3h under reduction atmosphere.

Studies on the fabrication and properties of $La_ 0.7Sr_0.3MnO_3$cathode contact prepared by glycine-nitrate process and solid state reaction method for the high efficient solid oxide fuel cells applications 0.3/Mn $O_{3}$ (고효율 고체산화물 연료전지 개발을 위한 자발 착화 연소 합성법과 고상반응법에 의한 $La_ 0.7Sr_0.3MnO_3$ 양극재료 제조 및 물성에 관한 연구)

  • Shin, Woong-Shun;Park, In-Sik;Kim, Sun-Jae;Park, Sung
    • Electrical & Electronic Materials
    • /
    • v.10 no.2
    • /
    • pp.141-149
    • /
    • 1997
  • L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders were prepared by both GNP(Glycine-Nitrate Process) and solid state reaction method in various of calcination temperature(800-1000.deg. C) and time in air. Also, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contacts on YSZ(Yttria-Stabilized Zirconia) substrate were prepared by screen printing and sintering method as a function of sintering temperature(1100-1450.deg. C) in air. Sintering behaviors have been investigated by SEM(Scanning Electron Microscope) and porosity measurement. Compositional and structural characterization were carried out by X-ray diffractometer and ICP AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) analysis. Electrical characterization was carried out by the electrical conductivity with linear 4 point probe method. As the calcination period increased in solid state reaction method, L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ phase increased. Although L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ single phase was obtained only for 48hrs at 1000.deg. C, in GNP method it was easy to get single and ultra-fine L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ powders with submicron particle size at 650.deg. C for 30min. The particle size and thickness of L $a_{0.7}$S $r_{0.3}$Mn $O_{3}$ cathode contact by solid state reaction method did not change during the heat treatment, while those by GNP method showed good sintering characteristics because initial powder size fabricated from GNP method is smaller than that fabricated from solid state reaction method. Based on enthalpy change from thermodynamic data and ICP-AES analysis, it was suggested to make cathode contact in composition of (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$ Mn $O_{3}$ which have little second phase (L $a_{2}$Z $r_{2}$ $O_{7}$) for high efficient solid oxide fuel cells applications. As (L $a_{0.7}$S $r_{0.3}$)$_{0.91}$Mn $O_{3}$ cathode contact on YSZ substrate was sintering at 1250.deg. C the temperature that liquid phase sintering did not occur. It was possible to obtain proper cathode contacts with electrical conductivity of 150(S/cm) and porosity content of 30-40%.m) and porosity content of 30-40%.

  • PDF

Simultaneous analysis method of 89Sr and 90Sr in liquid sample using automated separation system (자동핵종분리장치를 이용한 액체시료 중 89Sr, 90Sr 동시분석법 연구)

  • Kim, Heewon;Lee, Yong-Jin;Kim, Sun-Ha;Lee, Jin-Hong;Lim, Jong-Myoung;Kim, Hyuncheol
    • Analytical Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.274-284
    • /
    • 2020
  • This study described the analytical method for simultaneous determination of 89Sr and 90Sr in liquid sample using automated separation system. Radiostrontium in 0.5 kg of liquid sample was concentrated as SrCO3 to reduce the volume of sample, and purified from the sample using Sr-resin 2 mL (BV, Bed volume). The behavior of Sr and interferences such as Ba, Ca and Y were estimated with various flow rate ranging from 1 to 4 mL min-1. The detailed procedure for the purification of Sr on Sr-resin was presented. The purified radiostronitum was measured in Cerenkov mode and then measured in Scintillation mode by mixing scintillation cocktail. The measured value in both modes were used to calculate the activity of 89Sr and 90Sr. The performance tests were carried out the lab-control-sample having various activity ratio of between 89Sr and 90Sr. The recovery of Sr was ranged from 68 to 94 %. The relative bias of 89Sr activity was ranged from -5 to 20 %, and it was ranged from -10 to 10 % for 90Sr.

Surface Coating Treatment of Phosphor Powder Using Atmospheric Pressure Dielectric Barrier Discharge Plasma (대기압 유전체배리어방전 플라즈마를 이용한 형광체 분말 코팅)

  • Jang, Doo Il;Ihm, Tae Heon;Trinh, Quang Hung;Jo, Jin Oh;Mok, Young Sun;Lee, Sang Baek;Ramos, Henry J.
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.455-462
    • /
    • 2014
  • This work investigated the hydrophobic coating of silicate yellow phosphor powder in the form of divalent europium-activated strontium orthosilicate ($Sr_2SiO_4:Eu^{2+}$) by using an atmospheric pressure dielectric barrier discharge (DBD) plasma with argon as a carrier and hexamethyldisiloxane (HMDSO), toluene and n-hexane as precursors. After the plasma treatment of the phosphor powder, the lattice structure of orthosilicate was not altered, as confirmed by an X-ray diffractometer. The coated phosphor powder was characterized by scanning electron microscopy, fluorescence spectrophotometry and contact angle analysis (CAA). The CAA of the phosphor powder coated with the HMDSO precursor revealed that the water contact angle increased from $21.3^{\circ}$ to $139.5^{\circ}$ (max. $148.7^{\circ}$) and the glycerol contact angle from $55^{\circ}$ to $143.5^{\circ}$ (max. $145.3^{\circ}$) as a result of the hydrophobic coating, which indicated that hydrophobic layers were successfully formed on the phosphor powder surfaces. Further surface characterizations were performed by Fourier transform infrared spectroscopy and X-ray photoelectron spectrometry, which also evidenced the formation of hydrophobic coating layers. The phosphor coated with HMDSO exhibited a photoluminescence (PL) enhancement, but the use of toluene or n-hexane somewhat decreased the PL intensity. The results of this work suggest that the DBD plasma may be a viable method for the preparation of hydrophobic coating layer on phosphor powder.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Geochemical Studies of $CO_2$-rich Waters in Chojeong area II. Isotope Study (초정지역 탄산수의 지화학적 연구 II. 동위원소)

  • 고용권;김천수;배대석;최현수
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 1999
  • The $CO_2$-rich waters in the Chojeong area are characterized by low pH (5.0~5.8), high $CO_2$pressure (about 1 atm) and high amounts of total dissolved iou (up to 989 mg/L) and chemically belong to Ca-HC $O_3$type. The oxygen. deuterium and tritium isotope data indicate that the mixing process occurred between $CO_2$-rich water and surface water and/or shallow groundwaters and also suggest that the $CO_2$-rich water has been derived from meteoric waters. According to $\delta$$^{13}$ C values (-8.6~-5.3$\textperthousand$). the $CO_2$ in the water is attributed from deep seated $CO_2$gas. The high dissolved carbon (-14.4~-6.8$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the granitic terrain might be affected by $CO_2$-rich water, whereas the dissolved carbon (-17.9~-15.2$\textperthousand$. $\delta$$^{13}$ C) in groundwater of the metamorphic terrain is likely controlled by soil $CO_2$ and from the reaction with calcite in phyllite. Sulfur isotope data (+3.5~+11.3$\textperthousand$,$\delta$$^{34}$ $S_{SO4}$) also support the mixing process between $CO_2$-rich water and shallow groundwater. Strontium isotopic ratio ($^{87}$ Sr/$^{86}$ Sr) indicates that the $CO_2$-rich water (0.7138~0.7156) is not related to vein calcite (0.7184) of Buak mine or calcite (0.7281~0.7346) in phyllite. By nitrogen isotope ($\delta$$^{15}$ $N_{NO3}$) the sources of nitrogen (up to 55.0 mg/L, N $O_3$) in the $CO_2$-rich water are identified as fertilizer and animal manure. It also indicates the possibility of denitrification during the circulation of nitrogen in the Chojeong area. The possible evolution model of the $CO_2$-rich water based on the hydrochemical and environmental isotopic data was proposed in this study. The $CO_2$-rich waters from the Chojeong area were primarily derived from the reaction with granite by supply of deep seated $CO_2$. and then the $CO_2$-rich water was mixed and diluted with the local groundwater.ter.

  • PDF

Geochemical Studies of Geothermal Waters in Yusung Geotheraml Area (유성 지역 지열수의 지구화학적 특성 연구)

  • 김건영;고용권;김천수;배대석;박맹언
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.32-46
    • /
    • 2000
  • Hydrogeochemical and isotope ($\delta$$^{18}$ O, $\delta$D, $^3$H, $\delta$$^{13}$ C, $\delta$$^{34}$ S, $^{87}$ Sr/$^{86}$ Sr) studies of various kinds of waters (thermal groundwater, deep groundwater, shallow groundwater, and surface water) from the Yusung area were carried out in order to elucidate their geochemical characteristics such as distribution and behaviour of major/minor elements, geochemical evolution, reservoir temperature, and water-rock interaction of the thermal groundwater. Thermal groundwater of the Yusung area is formed by heating at depth during deep circlulation of groundwater and is evolved into Na-HCO$_3$type water by hydrolysis of silicate minerals with calcite precipitation and mixing of shallow groundwater. High NO$_3$contents of many thermal and deep groundwater samples indicate that the thermal or deep groundwaters were mixed with contaminated shallow groundwater and/or surface water. $\delta$$^{18}$ O and $\delta$D are plotted around the global meteoric water line and there are no differences between the various types of water. Tritium contents of shallow groundwater, deep groundwater and thermal groundwater are quite different, but show that the thermal groundwater was mixed with surface water and/or shallow groundwater during uprising to surface after being heated at depths. $\delta$$^{13}$ C values of all water samples are very low (average -16.3$\textperthousand$%o). Such low $\delta$$^{13}$ C values indicate that the source of carbon is organic material and all waters from the Yusung area were affected by $CO_2$ gas originated from near surface environment. $\delta$$^{34}$ S values show mixing properties of thermal groundwater and shallow groundwater. Based on $^{87}$ Sr/$^{86}$ Sr values, Ca is thought to be originated from the dissolution of plagioclase. Reservoir temperature at depth is estimated to be 100~1$25^{\circ}C$ by calculation of equilibrium method of multiphase system. Therefore, the thermal groundwaters from the Yusung area were formed by heating at depths and evolved by water-rock interaction and mixing with shallow groundwater.

  • PDF

Melting Characteristics for Radioactive Aluminum Wastes in Electric Arc Furnace (아크 용융로에서 방사성 알루미늄 폐기물의 용융특성)

  • Min, Byung-Youn;Song, Pyung-Seob;Ahn, Jun-Hyung;Choi, Wang-Kyu;Jung, Chong-Hun;Oh, Won-Zin;Kang, Yong
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.33-40
    • /
    • 2006
  • The characteristics of the aluminum waste melting and the distribution of the radioactive nuclides have been investigated for the estimation on the volume reduction and the decontamination of the aluminum wastes from the decommissioning of the TRIGA MARK it and III research reactors at the Korea Atomic Energy Research Institute(KAERI). The aluminum wastes were melted with the use of the fluxes such as flux $A:NaCl-KCl-Na_3AlF_6$, flux B:NaCl-NaF-KF, flux $C:CaF_2$, and flux $D:LiF-KCl-BaCl_2$ in the DC graphite arc furnace. For the assessment of the distribution of the radioactive nuclides during the melting of the aluminum, the aluminum materials were contaminated by the surrogate nuclides such as cobalt(Co), cesium(Cs) and strontium(Sr). The fluidity of aluminum melt was increased with the addition of the fluxes, which has slight difference according to the type of fluxes. The formation of the slag during the aluminum melting added the flux type C and D was larger than that with the flux A and B. The rate of the slag formation linearly increased with increasing the flux concentration. The results of the XRD analysis showed that the surrogate nuclide was transferred to the slag, which can be easily separated from the melt and then they combined with aluminum oxide to form a more stable compound. The distribution ratio of cobalt in ingot to that in slag was more than 40% at all types of fluxes. Since vapor pressures of cesium and strontium were higher than those that of the host metals at the melting temperature, their removal efficiency from the ingot phase to the slag and the dust phase was by up to 98%.

  • PDF

Source Term Characterization for Structural Components in $17{\times}17$ KOFA Spent Fuel Assembly ($17{\times}17$ KOFA 사용후핵연료집합체내 구조재의 방사선원항 특성 분석)

  • Cho, Dong-Keun;Kook, Dong-Hak;Choi, Heui-Joo;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.347-353
    • /
    • 2010
  • Source terms of metal waste comprising a spent fuel assembly are relatively important when the spent fuel is pyroprocessed, because cesium, strontium, and transuranics are not a concern any more in the aspect of source term of permanent disposal. In this study, characteristics of radiation source terms for each structural component in spent fuel assembly was analyzed by using ORIGEN-S with a assumption that 10 metric tons of uranium is pyroprocessed. At first, mass and volume for each structural component of the fuel assembly were calculated in detail. Activation cross section library was generated by using KENO-VI/ORIGEN-S module for top-end piece and bottom-end piece, because those are located at outer core with different neutron spectrum compared to that of inner core. As a result, values of radioactivity, decay heat, and hazard index were reveled to be $1.40{\times}10^{15}$ Bequerels, 236 Watts, $4.34{\times}10^9m^3$-water, respectively, at 10 years after discharge. Those values correspond to 0.7 %, 1.1 %, 0.1 %, respectively, compared to that of spent fuel. Inconel 718 grid plate was shown to be the most important component in the all aspects of radioactivity, decay heat, and hazard index although the mass occupies only 1 % of the total. It was also shown that if the Inconel 718 grid plate is managed separately, the radioactivity and hazard index of metal waste could be decreased to 20~45 % and 30~45 %, respectively. As a whole, decay heat of metal waste was shown to be negligible in the aspect of disposal system design, while the radioactivity and hazard index are important.