• Title/Summary/Keyword: 스트럿 작용

Search Result 29, Processing Time 0.024 seconds

Effect of Diagonal Cracking on the Strength of Concrete Strut in RC Members (철근콘크리트 부재에서 대각선 균열이 압축스트럿의 강동에 미치는 영향)

  • Ha, Tae-Hun;Hong, Sung-Gul
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.383-386
    • /
    • 2005
  • 철근콘크리트 부재가 하중을 받을 때, 응력교란구역에서의 힘의 흐름은 스트럿-타이 모델을 이용하여 효과적으로 표현할 수 있다. 그러나 스트럿-타이 모델을 이용하여 철근콘크리트 부재의 해석과 설계를 하기 위해서는 큰크리트 압축스트럿이 가지는 유효강도를 정확히 산정하여야 한다. 본 연구는 철근콘크리트 부재에 휨과 전단력이 동시에 작용할 때 발생하는 대각선 균열이 콘크리트 압축스트럿에 미치는 영향에 대해 설명하고 있다. 대각선 균열의 발생 메커니즘과 이로 인한 콘크리트 압축스트럿의 강도 저하를 이론적으로 설명하였으며, 그 결과를 철근콘크리트 보의 강도 산정에 적용하였다. 최종적으로 철근콘크리트 보의 강도 예측값을 기존 연구자들의 실험결과와 비교하여 제안된 이론의 합리성을 검증하였다.

  • PDF

Seismic Performance Evaluation of Masonry-Infilled Frame Structures using Equivalent Strut Models (등가 스트럿 모델을 이용한 조적조 채움벽 골조의 내진성능평가)

  • Park, Ji-Hun;Jeon, Seong-Ha;Kang, Kyung-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.47-59
    • /
    • 2012
  • The seismic performance of masonry-infilled frame structures, typical in school buildings, is evaluated through equivalent strut models. A bare frame model, concentric strut models and eccentric strut models with various material characteristics available in the literature are analyzed. Displacements and damage states at the performance points obtained by the capacity spectrum method show great differences among the models. Infill walls act positively in concentric strut models and negatively in eccentric strut models at the performance points for a given seismic demand. In addition, the behavior at the ultimate displacements shows considerably different strengths, inter-story drifts, and numbers and locations of damaged members among various modeling methods and material strengths.

Strut-Tie Model Evaluation of Haunch Effects in Concrete Structures (스트럿-타이 모델에 의한 콘크리트 구조물에서의 헌치부 영향 평가)

  • Yun, Young-Mook;Kim, Byung-Hun;Lee, Won-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.2
    • /
    • pp.183-196
    • /
    • 2003
  • This paper evaluates the effects of haunches and the characteristic differences of haunch design regulations through design of pier and box structures with/without haunches. The design of the pier and box structures was conducted by using the linear elastic plane stress finite element analysis, the DIN 1045 and ACI 318-99 codes, the suggested experimental design equations, and the strut-tie model approach. To prove the validity of design results obtained by the strut-tie model approach, the ultimate strength of two haunched reinforced concrete beams tested to failure was evaluated by using the approach. According to the comparison and evaluation of the design results, it is concluded that the design results of haunched reinforced concrete structures by using conventional and design codes need to be complemented with those by using the strut-tie model approach that reflected the effects of haunches in design comparatively well through the actions of arch and direct transfer of applied loads.

3-Dimensional Strut-Tie Model Analysis and Design of Structural Concrete (콘크리트 구조부재의 3차원 스트럿-타이 모델 해석 및 설계)

  • Yun, Young Mook;Park, Jung Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3A
    • /
    • pp.411-419
    • /
    • 2006
  • In this study, a new approach employing 3-dimensional strut-tie models for analysis and design of 3-dimensional structural concrete with disturbed regions that are not properly occupied by current design codes is proposed. In addition, a computer graphics program for the practical application of the approach is developed. The approach adopts a grid strut-tie model to exclude the subjectivity in the selection of strut-tie model and evaluates the effective strength of concrete strut by considering the 3-dimensional failure criteria of concrete and the deviation angles between the struts and compressive principal stress trajectories. To verify the appropriateness of the approach, nine pile caps tested to failure are analyzed and a bridge pier is designed. The analysis and design results are compared with those obtained by several different methods.

Effects of the Fillet Forms on the Juncture Flow (Fillet 형상이 접합부 주위의 유동에 미치는 영향)

  • Kim, Sun-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.1
    • /
    • pp.24-40
    • /
    • 1997
  • Horseshoe vortices generated around the juncture between the ship and her appendages often lower a performance of the ship by increasing the appendage drag and making a non-uniform wake on the propeller plane. This paper investigates numerically how the fillet around the juncture of the leading edge influences the juncture flow and the appendage drag. Computation has been made by solving Navier-Stokes equations with MAC method and the flows are at the Reynolds number of 5,000. Five fillets with different height-breath ratios and curvatures are chosen as test models to find out the effects of the shape of fillets on the appendage drag and wake. Computational results show that fillets with a smaller height-breath ratio and/or with a concave curvature has smaller appendage drag and more uniform wake.

  • PDF

Experimental Study on Shear Strength of AFRP-Reinforced Concrete Deep Beam (AFRP 보강근 콘크리트 깊은보의 전단강도에 대한 실험적 연구)

  • Cho, Jang-Se;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.445-448
    • /
    • 2010
  • 본 연구는 섬유 보강 폴리머(Fiber Reinforced Polymers, 이하 FRP) bar로 보강된 콘크리트 깊은 보의 전단강도를 평가하기 위하여 전단경간비, 보강비, 주근의 종류를 변수로 총 6개의 실험체에 대한 전단 실험을 수행하였다. 전단실험을 토대로 FRP bar로 보강된 콘크리트 깊은보의 균열 및 처짐에 대한 거동 조사를 수행하였으며, ACI 318-08의 스트럿-타이 모델을 이용한 전단강도와 아치작용을 고려한 기존 제안식에 의한 전단강도를 비교 평가하였다. 그 결과, FRP bar로 보강한 실험체와 철근으로 보강한 실험체는 상이한 전단거동을 보였으며, FRP bar로 보강한 경우의 전단강도가 철근으로 보강한 경우보다 증가하는 것으로 나타났다. 전단강도 산정에 있어서는 ACI 318-08의 스트럿-타이 모델을 이용한 방법이 기존 제안식에 의한 방법보다 상대적으로 정확했다.

  • PDF

Seismic Design of Rib-Reinforced RBS (Reduced Beam Section) Steel Moment Connections Based on Equivalent Strut Model (등가 스트럿 모델에 의한 리브 보강 RBS 철골모멘트접합부의 내진설계)

  • Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.5
    • /
    • pp.493-502
    • /
    • 2001
  • This paper describes a seismic design procedure for rib-reinforced RBS(Reduced Beam Section) steel moment connections. Engineers often use rib plates to enhance seismic performance of steel moment connections. thinking that the 2nd moment of inertia is increased so that the tensile stress in the beam flange groove weld is reduced However the force transfer mechanism in the rib connections is completely different from that as predicted by the classical beam theory ; a clear diagonal strut action is present in the rib. By treating the rib as a strut the writer has recently proposed an equivalent strut model that could be used as the basis of a practical design procedure. In this paper the proposed equivalent strut model is briefly presented first. A step-by-step design procedure is then recommended based on the proposed model.

  • PDF

Strut-and-Tie Model for Shear Strength of Reinforced Concrete Squat Shear Walls (저층형 철근콘크리트 전단벽의 전단강도 평가를 위한 스트럿-타이 모델)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.615-623
    • /
    • 2015
  • The previous strut-and-tie models (STMs) to evaluate the shear strength of squat shear walls with aspect ratio less than 2.0 do not consider the axial load transfer of concrete strut and individual shear transfer contribution of horizontal and vertical shear reinforcing bars in the web. To overcome the limitation of the existing models, a simple STM was established based on the crack band theory of concrete fracture mechanics. The equivalent effective width of concrete strut having a stress relief strip was determined from the neutral axis depth and effective factor of concrete strength. The shear transfer mechanism of shear reinforcement at the extended crack band zone was calculated from an internally statically indeterminate truss system. The shear transfer capacity of concrete strut and shear reinforcement was then driven using the energy equilibrium in the stress relief strip and crack band zone. The shear strength predictions of squat shear walls evaluated from the current models are in better agreement with 150 test results than those determined from STMs proposed by Siao and Hwang et al. Furthermore, the proposed STM gives consistent agreement with the observed trend of the shear strength of shear walls against different parameters.

Shear Strength of Concrete Deep Beam Reinforced AFRP rebar (AFRP rebar로 보강된 콘크리트 깊은보의 전단강도)

  • Lee, Young-Hak;Kim, Min-Sook;Cho, Jang-Se;Kim, Hee-Cheul
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.6
    • /
    • pp.1-9
    • /
    • 2009
  • This study carried out a shear experiment on concrete deep beam reinforced AFRP to investigate the shear strength of deep beam. The test was conducted on 8 specimens, and the variables were shear span ratio, reinforcement ratio, effective depth, and rebar type. We compared shear strength using ACI 318-08 STM with proposed equations that considered arching action according to shear span ratio. As a result, it was found that shear strength of deep beam reinforced AFRP rebar presented higher shear strength than steel rebar. ACI STM's predictions are more accurate than other predicting equations, and thus this research proposed model versus effective compressive strength of the concrete strut that considered strut size effect based on test results. The predictions obtained using the proposed model are in better agreement than previous equations and codes.

Splice Strengths of Noncontact Lap Splices Using Strut-and-Tie Model (스트럿-타이 모델을 이용한 비접촉 겹침 이음의 이음 강도 산정)

  • Hong, Sung-Gul;Chun, Sung-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.2
    • /
    • pp.199-207
    • /
    • 2007
  • Strut-and-tie models for noncontact lap splices are presented and parameters affecting the effective lap length $(l_p)$ and the splice strength are discussed in this paper. The effective lap length along which bond stress is developed is shorter than the whole lap length. The effective lap length depends on the transverse reinforcement ratio $({\Phi})$ and the ratio of spacing to lap length $({\alpha})$. As the splice-bar spacing becomes wider, the effective lap length decreases and, therefore, the splice strength decreases. The influence of the ratio ${\alpha}$ on the effective lap length becomes more effective when the transverse reinforcement ratio is low. Because the slope of the strut developed between splice-bars becomes steeper as the ratio ${\Phi}$ becomes lower, the splice-bar spacing significantly affects the effective lap length. The proposed strut-and-tie models for noncontact lap splices are capable of considering material and geometric properties and, hence, providing the optimal design for detailing of reinforcements. The proposed strut-and-tie model can explain the experimental results including cracking patterns and the influence of transverse reinforcements on the splice strength reported in the literature. From the comparison with the test results of 25 specimens, the model can predict the splice strengths with 11.1% of coefficient of variation.