• Title/Summary/Keyword: 스토리지 입출력 속도

Search Result 6, Processing Time 0.022 seconds

Development and Application of HDD I/O Measurement Utility Blockwrite (하드디스크 데이터 I/O 속도 측정용 유틸리티 blockwrite 개발과 응용)

  • Kim, Hyo-Ryoung;Song, Min-Gyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.6
    • /
    • pp.1151-1158
    • /
    • 2020
  • In order to investigate the speed profile of data I/O of HDD, we have developed an utility program. The application to HDD reveals the detail properties of the speed profile of HDD and the relation between the cylinder structure of HDD and the velocity profile. For the extent application, the experiment of the large volume storage was performed, and the profile of SSD media, which is known as the new rapid media, was measured. The new M.2 NVME SSD, which has the ability of over 10Gbps, we can compare the velocities between cp under linux O/S and the utility, and shows that the performance of the utility can be reliable.

Large Storage Performance and Optimization Study using blockwrite (blockwrite를 이용한 대형 스토리지 성능 측정 및 최적화 연구)

  • Kim, Hyo-Ryoung;Song, Min-Gyu;Kang, Yong-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.6
    • /
    • pp.1145-1152
    • /
    • 2021
  • In order to optimize the performance of 1.4P large storage, the characteristics of each chunk mode were investigated, and the chunk 512K mode was selected in terms of I/O speed. NVME storage system was configured and used to measure data server performance of large storage. By measuring the change in throughput according to the number of threads of the 1.4P large storage, the characteristics of the large storage system were identified, and it was confirmed that the performance was up to 133Gbps with a block size of 32KB. As a result of data transmission/reception experiment using globus-url-copy of GridFTP, it was found that this large storage has a throughput of 33Gbps.

Recycling Invalid Data Method for Improving I/O Performance in SSD Storage System (SSD 기반 스토리지 시스템에서 입출력 성능 향상을 위한 무효데이터 재활용 기법)

  • Kim, Ju-Kyeong;Lee, Seung-Kyu;Mehdi, Pirahandeh;Kim, Deok-Hwan
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06a
    • /
    • pp.230-232
    • /
    • 2012
  • SSD(Solid State Disk)는 다수의 플래시 메모리로 구성되며 기존의 하드디스크(HDD) 보다 데이터 전송 속도가 빠르고 강한 내구성, 저소음, 저전력의 장점을 가지고 있다. 하지만 제자리 덮어쓰기가 안되므로 SSD 공간에서 무효데이터가 차지하는 비중이 높아지며, 한 셀당 쓰기 및 삭제 횟수가 제한되어 있다는 단점이 있다. 본 논문에서는 무효데이터와 입력데이터의 중복성 검사를 통하여 무효데이터를 재활용하는 중복제거 기법을 제안한다. 무효데이터의 재활용과 중복제거를 통하여 SSD의 마모도 감소와 가비지컬렉션의 빈도를 낮춰서 I/O 속도의 향상을 기대할 수 있다. 실험을 통하여 무효데이터를 재활용 하는 경우와 유효데이터를 활용한 중복제거 방법의 성능을 비교하였다.

Design and Implementation of High Performance Virtual Desktop System Managing Virtual Desktop Image in Main Memory (메인 메모리상에 가상 데스크탑 이미지를 운용하는 고속 가상 데스크탑 시스템 설계 및 구현)

  • Oh, Soo-Cheol;Kim, SeungWoon
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.363-368
    • /
    • 2016
  • A storage-based VDI (Virtual Desktop Infrastructure) system has the disadvantage of degraded performance when IOs for the VDI system are concentrated on the storage. The performance of the VDI system decreases rapidly especially, in case of the boot storm wherein all virtual desktops boot simultaneously. In this paper, we propose a main memory-based virtual desktop system managing virtual desktop images on main memory to solve the performance degradation problem including the boot storm. Performance of the main memory-based VDI system is improved by storing the virtual desktop image on the main memory. Also, the virtual desktop images with large size can be stored in the main memory using deduplication technology. Implementation of the proposed VDI system indicated that it has 4 times performance benefit than the storage-based VDI system in case of the boot storm.

Adaptive Garbage Collection Technique for Hybrid Flash Memory (하이브리드 플래시 메모리를 위한 적응적 가비지 컬렉션 기법)

  • Im, Soo-Jun;Shin, Dong-Kun
    • The KIPS Transactions:PartA
    • /
    • v.15A no.6
    • /
    • pp.335-344
    • /
    • 2008
  • We propose an adaptive garbage collection technique for hybrid flash memory which has both SLC and MLC. Since SLC area is fast and MLC area has low cost, the proposed scheme utilizes the SLC area as log buffer and the MLC area as data block. Considering the high write cost of MLC flash, the garbage collection for the SLC log buffer moves a page into the MLC data block only when the page is cold or the page migration invokes a small cost. The other pages are moved within the SLC log buffer. Also it adjusts the parameter values which determine the operation of garbage collection adaptively considering I/O pattern. From the experiments, we can know that the proposed scheme provides better performance compared with the previous flash management schemes for the hybrid flash and finds the parameter values of garbage collection close to the optimal values.

A Hetero-Mirroring Scheme to Improve I/O Performance of High-Speed Hybrid Storage (고속 하이브리드 저장장치의 입출력 성능개선을 위한 헤테로-미러링 기법)

  • Byun, Si-Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4997-5006
    • /
    • 2010
  • A flash-memory-based SSDs(Solid State Disks) are one of the best media to support portable and desktop computers' storage devices. Their features include non-volatility, low power consumption, and fast access time for read operations, which are sufficient to present flash memories as major database storage components for desktop and server computers. However, we need to improve traditional storage management schemes based on HDD(Hard Disk Drive) and RAID(Redundant array of independent disks) due to the relatively slow or freezing characteristics of write operations of SSDs, as compared to fast read operations. In order to achieve this goal, we propose a new storage management scheme called Hetero-Mirroring based on traditional HDD mirroring scheme. Hetero-Mirroring-based scheme improves RAID-1 operation performance by balancing write-workloads and delaying write operations to avoid SSD freezing. Our test results show that our scheme significantly reduces the write operation overheads and freezing overheads, and improves the performance of traditional SSD-RAID-1 scheme by 18 percent, and the response time of the scheme by 38 percent.