• 제목/요약/키워드: 스텐실 마스크

검색결과 11건 처리시간 0.028초

고분자 코팅의 내구성 향상을 위한 스테인리스 스틸 표면 개질 (Surface Modification of Stainless Steel for Enhanced Durability of Polymeric Coating)

  • 박민;장지영;이창준;이용원
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.226-227
    • /
    • 2015
  • 인쇄회로기판에 솔더 페이스트를 인쇄하기 위하여 스테인리스 스틸 (Stainless steel, (i.e., SUS)) 재질의 솔더 페이스트 인쇄용 스텐실 마스크가 사용되고 있다. 하지만, 솔더 페이스트가 스텐실 마스크에 쉽게 달라붙기 때문에 솔더 페이스트에 의한 오염으로 인하여 생산성이 떨어지며, 스텐실 마스크 수명이 짧아지는 문제점이 발생되고 있다. 이를 해결하기 위하여 본 연구에서는 스텐실 마스크 표면에 소수성을 가진 고분자 코팅을 함으로써 솔더 페이스트가 쉽게 붙는 것을 억제하고자 하였다. 더욱 중요하게 스텐실 마스크에 전해연마 및 플라즈마 처리를 통한 표면 개질을 부여함으로써 고분자 코팅의 내구성을 향상시키고자 하였다.

  • PDF

Nd:YAG레이저를 이용한 스텐실 절단공정II -레이저의 공정변수가 스텐실 절단특성에 미치는 영향- (Stencil cutting process by Nd:YAG laser II -Influence of process parameters on cutting characteristics of stencil-)

  • 이제훈;서정;김정오;신동식;이영문
    • 한국레이저가공학회지
    • /
    • 제4권2호
    • /
    • pp.47-57
    • /
    • 2001
  • This study deals with the laser cutting of stencil for the PCB. The most important aim of this study is to determine optimal conditions which make good-qualify stencil in Nd:YAG laser cutting. We made an experiment according to various variables (power. type of mask. gas pressure, cutting speed, and pulse width) and analyzed the cutting characteristics (surface roughness, kerf width. dross) . Each variable has optimal value for good-qualify cut edge under fixed condition. And neural network after learning experimental data with a million time iteration could predict surface roughness of cut edge under arbitrary condition approximately.

  • PDF

FIB 밀링을 이용한 나노스텐실 제작 및 나노패터닝 (Fabrication of nanostencil using FIB milling for nanopatterning)

  • 정성일;오현석;김규만
    • 한국정밀공학회지
    • /
    • 제23권3호
    • /
    • pp.56-60
    • /
    • 2006
  • A high-resolution shadow mask, or called a nanostencil was fabricated for high resolution lithography. This high-resolution shadowmask was fabricated by a combination or MEMS processes and focused ion beam (FIB) milling. 500 nm thick and $2{\times}2mm$ large membranes wore made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane. By local deposition through the apertures of nanostencil, nanoscale patterns down to 70 nm could be achieved.

FIB 밀링을 이용한 나노스텐실 제작 (Nanostencil fabrication using FIB milling)

  • 김규만;정성일;오현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.871-874
    • /
    • 2004
  • Fabrication of a high-resolution shadow mask, or called nanostencil, is presented. This high-resolution shadowmask is fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. 500 nm thick and 2x2 mm large membranes are made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. Subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to high resolution of FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane.

  • PDF

스텐실 제작용 레이저 공정기술 개발 (Development of laser process for stencil manufacturing)

  • 신동식;이영문;이제훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.989-992
    • /
    • 1997
  • The objective of this study is to develop stencil cutting process and determine optimal conditions which make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse width on the cut edge quality were investigated. In order to analyze the cut surface characteristics(roughness, kerf width, dross) optical microscopy, SEM photography and roughness test were used. A a results, the optimal conditions of process parameters were determined, and the practical feasibility of the proposed system is also examined by using a commercial gerber file for PCB stencil manufacturing.

  • PDF

나노스텐실 제작을 위한 집속이온빔 밀링 특성 (Focused Ion Beam Milling for Nanostencil Lithography)

  • 김규만
    • 한국정밀공학회지
    • /
    • 제28권2호
    • /
    • pp.245-250
    • /
    • 2011
  • A high-resolution shadow mask, a nanostencil, is widely used for high resolution lithography. This high-resolution shadowmask is often fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. In this study, FIB milling on 500-nm-thin SiN membrane was tested and characterized. 500 nm thick and $2{\times}2$ mm large membranes were made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 60 nm could be made into the membrane. The nanostencil could be used for nanoscale patterning by local deposition through the apertures.

나노스텐실 제작을 위한 FIB 밀링 특성 (FIB milling on nanostencil membrane)

  • 김규만;정성일;오현석
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 추계학술대회 논문집
    • /
    • pp.318-321
    • /
    • 2005
  • FIB (Focused ion Beam) milling on a 500-nm-thick silicon nitride membrane was studied in order to fabricate a high-resolution shadow mask, or called a nanostencil. The silicon nitride membrane was fabricated by MEMS processes of LPCVD, photolithography, ICP etching and bulk silicon etching. The apertures made by FIB milling and normal photolithography were compared. The square metal pattern deposited through FIB milled shadow mask showed 6 times smaller comer radius than the case of photolithography. The results show high resolution patterning could be achieved by local deposition through FIB milled shadow-mask.

  • PDF

레이저 스텐실 가공 시스템 및 공정 기술 개발 (Development of Laser Process and System for Stencil Manufacturing)

  • 이제훈;서정;김정오;신동식;이영문
    • 한국정밀공학회지
    • /
    • 제19권2호
    • /
    • pp.106-113
    • /
    • 2002
  • Stencil is used normally as a mask for seeder pasting on pad of PCB. The objective of this study is to develop stencil cutting system and determine optimal conditions which make good-quality stencil by using a Nd:YAG laser. The effects of process parameters such as laser power, type of mask, gas pressure, cutting speed and pulse width old the cut edge quality were investigated. In order to analyse fille cut surface characteristics(roughness, kerf width, dross) optical microscopy, SEM photography and roughness test were used. As a result, the optimal conditions of process parameters were determined, and the practical feasibility of the proposed system is also examined by using a commercial Gerber file for PCB stencil manufacturing.