• Title/Summary/Keyword: 스테인레스 630

Search Result 7, Processing Time 0.026 seconds

Mechanical Properties and cytotoxicity of nitrided 630 Stainless by ion nitriding (플라즈마 이온질화에 따른 STS 630의 기계적 특성과 세포독성에 관한 융합적 연구)

  • Hwang, Gab-Woon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.241-246
    • /
    • 2019
  • In this study, we have examined the possibility to improve the material properties and biocompatibility of the 630 stainless steel for the application of medical instruments. The evaluation of mechanical properties and biocompatibility of the 630 stainless steel were studied by aging, nitriding, SEM measurement, Vicker's hardness, tensile strength and MTT cytotoxicity using IGF cells, respectively. The results showed that the tensile strength and Vicker's hardness of 630 stainless steel was increased with aging and ion nitriding time. The cytotoxicities of the 630 stainless decreased compared with the 420 stainless on MTT cytotoxicity using IGF cells. Ion nitriding of 630 stainless led to an enhanced application of medical instruments and biocompatibility performance.

Characterization of Manufacturing Process of Metal Fibers of Stainless Steel and Titanium (스테인레스 스틸 극세사와 Ti 극세사 제조 특성 평가)

  • Kim T. H.;Ko J. H.;Lee D. B.
    • Korean Journal of Materials Research
    • /
    • v.15 no.1
    • /
    • pp.37-41
    • /
    • 2005
  • Stainless steel fibers with a diameter of $17\;{\mu}m$ and 630 nm were produced from stainless steel wires by the drawing/annealing/exfolitation process. The suitable sheath material to draw the core stainless steel wires to fibers was the Cu coating. The low melting metal of Zn was not a suitable sheath coating. Also, an attempt was made to produce $20\;{\mu}m{\Phi}Ti$ fibers from the core titanium wires. The main obstacles in producing Ti fibers were their resistance to deformation owing to the Ti's hop structure, and high reactivity of Ti with the exfolitation solution.

Spherical Indentation Testing to Evaluate Mechanical Properties in 1Cr-1Mo-0.25V Steel (구형압입시험에 의한 1Cr-1Mo-O.25V강의 기계적 물성 평가)

  • Lee, Jong-Min;Lee, Seung-Seok;Lee, Ouk-Sub;Nam, Young-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.5
    • /
    • pp.516-522
    • /
    • 2002
  • For the experimental study of rotor steel, seven kind of specimens with different degradation levels were prepared by isothermal heat treatment at $630^{\circ}C$. Spherical indentation technique was developed to evaluate the flow properties of metallic materials in carbon steel, stainless steel, and alloys, etc. Through the spherical indentation test, differently degraded 1Cr-1Mo-0.25V steel's mechanical properties were observed and compared with conventional standard test data. The flow properties of 1Cr-1Mo-0.25V steel's were estimated by analyzing the indentation load-depth curve. To characterize the flow property, we used material yield slope and constraint factor index rather than strain-hardening exponent because the variation of strain-hardening exponent was very little and the data showed irregularly. And the constraint factor's effect was small when the material yield slope was taken into account.

The Effects of Hot Corrosion on the Creep Rupture Properties of Boiler Tube Material (보일러 管材料의 크리프破斷特性에 미치는 고온부식의 影響)

  • 오세욱;박인석;강상훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.2
    • /
    • pp.236-242
    • /
    • 1989
  • In order to investigate the effects of hot corrosion on the creep rupture properties and creep life of 304 stainless steel being used as tube materials of heavy oil fired boiler, the creep rupture tests were carried out at temperature 630.deg.C, 690.deg.C and 750.deg.C in static air for the specimens with or without coating of double layer corrosives according to the new hot corrosion test method simulating the situation commonly observed on superheater tubes of the actual boiler. The double layer corrosives are 85% V$_{2}$O$_{5}$ + 10% Na$_{2}$So$_{4}$ + 5% Fe$_{2}$O$_{3}$ as the inner layer corrosive being once melted at 900.deg. C and crushed to powder, and 10% V$_{2}$O$_{5}$ + 85% Na$_{2}$SO$_{4}$ +5% Fe$_{2}$O$_{3}$ as the outer layer corrosive. As results, in the specimen coated with the double layer corrosives, the rupture strength was extremely lowered and showed a large difference each other. The rupture ductility also lowered remarkably as a result of the brittle fracture mode due to hot corrosion. These results indicate that hot corrosion could essentially alter the creep fracture mechanism. From the metallographic observation, it was clarified that the rupture life of 304 stainless steel subjected to hot corrosion was chiefly determined by the behavior of the aggressive intergranular penetration of sulfides.des.

Influence of Gadolinium Addition on Mechanical and Corrosion Properties of 2205 Duplex Stainless Steel (가돌리늄 첨가에 따른 2205 듀플렉스 스테인레스 강의 기계적 및 부식 특성 변화)

  • Lim, Jae-han;Ahn, Ji-Ho;Moon, Byung-Moon;Kim, Young-Jig
    • Journal of Korea Foundry Society
    • /
    • v.35 no.6
    • /
    • pp.163-169
    • /
    • 2015
  • This study reports the influence of gadolinium (Gd) addition on mechanical and corrosion properties of 2205 duplex stainless steel. In all alloys produced, regardless of the initial Gd content, Gd-based inclusions were well distributed in the duplex stainless steel matrix. As the Gd content increased from 0 wt% to 0.19 wt%, the ultimate tensile strength and hardness of the alloy increased from 630 MPa to 977 MPa and from 57 to 61, respectively, while elastic modulus, tensile elongation and impact energy of the alloy decreased. The critical crevice temperatures of Alloy1, Alloy2 and Alloy3 were $20^{\circ}C$, $20^{\circ}C$ and $15^{\circ}C$, respectively.

An Evaluation on Electrochemical Polarization Characteristics and Material Degradation for Cr-Mo-V Steel (Cr-Mo-V강의 전기화학적 분극 특성과 재질열화 평가)

  • Kwon, Il-Hyun;Lee, Song-In;Ha, Jeong-Soo;Yu, Hyo-Sun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.267-274
    • /
    • 2002
  • This research is described on the applicability of a electrochemical techniques for evaluating nondestructive material degradation with various polarization characteristics for Cr-Mo-V steel. The applied electrochemical technique is anodic polarization test which are widely used to evaluate the corrosion rate and/or sensitization at depleted zone of strengthening elements mainly caused by thermal experience for stainless steels. The evaluation of material degradation is performed by small punch test which has been well known as micromechanics test method using specimen size of $10{\times}10{\times}0.5mm$. The 1,000hrs aged material at $630^{\circ}C$ shows the highest material degradation$({\Delta}[DBTT]_{SP})$, but the 2,000hrs and 3,000hrs aged materials show the decrease of ${\Delta}[DBTT]_{SP}$ as aging time increases. It is observed that the difference of current density $({\Delta}I_{FP}\;and\;{\Delta}I_{SP})$.

Oxidation Behaviors and Degradation Properties of Aluminide Coated Stainless Steel at High Temperature (알루미나이드 확산코팅된 스테인레스 합금의 내산화 및 내삭마 특성)

  • Hwang, Cheol Hong;Lee, Hyo Min;Oh, Jeong Seok;Hwang, Dong Hyeon;Hwang, Yu Seok;Lee, Jong Won;Choi, Jeong Mook;Park, Joon Sik
    • Journal of Powder Materials
    • /
    • v.28 no.5
    • /
    • pp.396-402
    • /
    • 2021
  • Stainless steel, a type of steel used for high-temperature parts, may cause damage when exposed to high temperatures, requiring additional coatings. In particular, the Cr2O3 product layer is unstable at 1000℃ and higher temperatures; therefore, it is necessary to improve the oxidation resistance. In this study, an aluminide (Fe2Al5 and FeAl3) coating layer was formed on the surface of STS 630 specimens through Al diffusion coatings from 500℃ to 700℃ for up to 25 h. Because the coating layers of Fe2Al5 and FeAl3 could not withstand temperatures above 1200℃, an Al2O3 coating layer is deposited on the surface through static oxidation treatment at 500℃ for 10 h. To confirm the ablation resistance of the resulting coating layer, dynamic flame exposure tests were conducted at 1350℃ for 5-15 min. Excellent oxidation resistance is observed in the coated base material beneath the aluminide layer. The conditions of the flame tests and coating are discussed in terms of microstructural variations.