• Title/Summary/Keyword: 스테레오리소그래피

Search Result 15, Processing Time 0.027 seconds

Effect of the STereoLithography File Structure on the Ear Shell Production for Hearing Aids According to DICOM Images (DICOM 영상에 의한 STL 파일 구조가 보청기 이어 쉘 제작에 미치는 영향)

  • Kim, Hyeong-Gyun
    • Journal of radiological science and technology
    • /
    • v.40 no.1
    • /
    • pp.121-126
    • /
    • 2017
  • A technique for producing the ear shell for a hearing aid using DICOM (Digital Imaging and Communication in Medicine) image and a 3D printing was studied. It is a new application method, and is an application technique that can improve the safety and infection of hearing aid users and can reduce the production time and process stages. In this study, the effects on the shape surface were examined before and after the printing of the ear shell using a 3D printer based on the values obtained from the raw data of the DICOM images at the volumes of 0.5 mm, 1.0 mm, and 2.0 mm, respectively. Before the printing, relative relationship was compared with respect to the STL (STereoLithography) file structure; and after the printing, the intervals of the layered structure of the ear shell shape surface were compared by magnifying them using a microscope. For the STL file structure, the numbers of triangular vertices, more than five intersecting points, and maximum intersecting points were large in the order of 0.5 mm, 1.0 mm, and 2.0 mm, respectively; and the triangular structure was densely distributed in the order of the bending, angle, and crest regions depending on the sinuosity of the external auditory meatus shape. As for the ear shell shape surface examined by the digital microscope, the interval of the layered structure was thick in the order of 2.0 mm, 1.0 mm, and 0.5 mm. For the STL surface structure mentioned above, the intersecting STL triangular structure was denser as the sinuosity of the 3D ear shell shape became more irregular and the volume of the raw data decreased.

Investigation into direct fabrication of nano-patterns using nano-stereolithography (NSL) process (나노 스테레오리소그래피 공정을 이용한 무(無)마스크 나노 패턴제작에 관한 연구)

  • Park Sang Hu;Lim Tae-Woo;Yang Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.156-162
    • /
    • 2006
  • Direct fabrication of nano patterns has been studied employing a nano-stereolithography (NSL) process. The needs of nano patterning techniques have been intensively increased for diverse applications for nano/micro-devices; micro-fluidic channels, micro-molds. and other novel micro-objects. For fabrication of high-aspect-ratio (HAR) patterns, a thick spin coating of SU-8 process is generally used in the conventional photolithography, however, additional processes such as pre- and post-baking processes and expansive precise photomasks are inevitably required. In this work, direct fabrication of HAR patterns with a high spatial resolution is tried employing two-photon polymerization in the NSL process. The precision and aspect ratio of patterns can be controlled using process parameters of laser power, exposure time, and numerical aperture of objective lens. It is also feasible to control the aspect ratio of patterns by truncation amounts of patterns, and a layer-by-layer piling up technique is attempted to achieve HAR patterns. Through the fabrication of several patterns using the NSL process, the possibility of effective patterning technique fer various N/MEMS applications has been demonstrated.

Direct Patterning of 3D Microstructures on an Opaque Substrate Using Nano-Stereolithography (나노 스테레오리소그래피 공정을 이용한 불투명 기판에서의 3차원 마이크로 형상 제작 방법에 관한 연구)

  • Son, Yong;Lim, Tae-Woo;Ha, Cheol-Woo;Yang, Dong-Yol;Jung, Byung-Je;Kong, Hong-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.10
    • /
    • pp.93-99
    • /
    • 2010
  • A nano-stereolithography is the direct patterning process with a nanoscale resolution using twophoton absorption induced by a femtosecond laser. However, in the majority of the works, the fabrication of 3D microstructures have been done only onto transparent glass due to the use of an oil immersion objective lens for achieving a high resolution. In this work, the coaxial illumination and the auto-focusing system are proposed for the direct patterning of nano-precision patterns on an opaque substrate such as a silicon wafer and a metal substrate. Through this work, 3D polymer structures and metallic patterns are fabricated on a silicon wafer using the developed process.

An Observational Study on the Morphological Changes of the External Ear Canal by Converging DICOM Imaging and Design Modeling (DICOM 영상과 설계 모델링을 융합한 외이도의 형태적 변화 관찰 연구)

  • Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.173-179
    • /
    • 2019
  • DICOM(Digital Imaging and Communications in Medicine) imaging plays a significant role in the diagnosis and treatment of the human body, and design modeling is a technology of planning shapes in three dimensions according to the purpose. In this study, we converge these two technologies to observe the relationships of the cross-section, volume, and surface area to the morphological changes of the external ear canal. The experiment applied medical imaging technologies to acquire sections of the human body to create and divide centerlines using 3D shapes extracted from 19 external ear canals by applying stereolithography and 3-matic program. The results showed that the cross-sectional structure of the external ear canal had various shapes, such as oval (38.5%), semicircular (28.2%), mixed (17.9%), square (10.2%), and wrinkled (5.1%). In addition, the cross-sectional area of each phase increased as the length of the external ear canal increased, and the volume and surface area decreased towards the direction of the eardrum. However, the surface area reduction rate was relatively low. This indicates that the structure becomes irregular towards the direction of the eardrum.

Convergent Study of Personalized Modeling and 5-Axis Machining Technology Using Patellofemoral Bone DICOM Image (넙다리무릎뼈 의료용 디지털 영상 및 통신 표준 영상을 이용한 맞춤형 모델링과 5축 가공기술의 융합적 연구)

  • Yoon, Jae-Ho;Kim, Hyeong-Gyun
    • Journal of the Korea Convergence Society
    • /
    • v.9 no.11
    • /
    • pp.137-143
    • /
    • 2018
  • DICOM images of patellofemoral bones were converted into a stereolithography file, and a Unigraphics CAD program was used to create a CAD modeling in which there exists point, line and facet information. The modeling extraction of joint facets was performed by linking two adjacent points into lines in the stereolithography file by using the Unigraphics rapid spacing function and then linking the lines into facets to complete the entire modeling. This modeling extraction was performed based on the anatomical knowledge of joint facet directions. As a result, a personalized space modeling and solid modeling were produced for the joint facets of patellofemoral bones. This was followed by a CAM control computing operation of solid modeling on graphite materials and 5-axis machining of patellofemoral bones. That is the description of a method for a personalized implant modeling by using DICOM images of patellofemoral bones.

A Scheme to Control Laser Power and Exposure Time for Fabricating Precise Threedimensional Microstructures in Nano-stereolithography (nSL) Process (3 차원 나노 스테레오리소그래피의 정밀화를 위한 펨토초 레이저 출력-조사시간 제어방법)

  • 박상후;임태우;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1365-1368
    • /
    • 2004
  • A scheme to control the laser power and the exposure time was studied to fabricate precise microstructures using the nanostereolithography (nSL) process. Some recent works have shown that a three-dimensional (3D) microstructure can be fabricated by the photopolymerizing process which is induced by two-photon absorption (TPA) with a femtosecond pulse laser. TPA provides the ability to confine photochemical and physical reactions within the order of laser wavelength, so neardiffraction limit features can be produced. In the nSL process, voxels are continuously generated to form a layer and then another layer is stacked in the normal direction of a plane to construct a 3D structure. Thus, fabrication of a voxel with low aspect ratio and small diameter is one of the most important parameters for fabricating precise 3D microstructures. In this work, the mechanism of a voxel formation is studied and a scheme on the control of laser power and exposure for minimizing aspect ratio of a voxel is proposed.

  • PDF

Continuous Scanning Method for Improvement of Precision and Fabrication Efficiency of Two-Photon Stereolithography (연속적 스캐닝 방법을 이용한 이광자 광중합 공정의 제작 속도 및 정밀도 개선에 관한 연구)

  • Lim, Tae-Woo;Son, Yong;Yang, Dong-Yol;Kong, Hong-Jin;Lee, Kwang-Sup;Park, Sang-Hu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.5
    • /
    • pp.396-401
    • /
    • 2008
  • Minimization of processing time in two-photon stereolithography (TPS) has been one of important issues. Generally, a voxel scanning method (VSM) has been used in TPS because the method is very profitable for the stable fabrication irrespective of jittering and response time of scanning equipments such as a stage and a galvano-scanner. However, supplementary processing time due to the on/off control of a shutter for the generation of each voxel is required inevitably in VSM; by this reason, much processing time takes to fabricate largescale micropatterns and three-dimensional patterns. In this work, a continuous scanning method (CSM), generating patterns by movement of beam focus with a constant speed, is proposed for the improvements of scanning speed and precision in TPS. Some line patterns are fabricated by each scanning method to demonstrate the usefulness of CSM with viewpoints of scanning speed and precision.