• Title/Summary/Keyword: 스터럽

Search Result 59, Processing Time 0.036 seconds

Evaluation of Bond Strength of Deformed Bars in Pull-out Specimens Depending on Stirrups Spacing, Rebar diameter and Corrosion Rate (스터럽간격, 철근직경 및 부식률에 따른 인발 실험체의 부착강도 평가)

  • Seong-Woo Ji;Hoseong Jeong;Cha-Young Yoon;Jae-Yeon Lee;Kang Su Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.47-57
    • /
    • 2023
  • In this study, pull-out tests were performed to investigate the effects of stirrup spacing, rebar diameter, and corrosion rate on bond strength of deformed bars in reinforced concrete. Twelve pull-out specimens with different stirrup spacing, rebar diameter, and corrosion rate were prepared following the RILEM RC6 guidelines. The test results showed that the bond strength of specimens with stirrups increased when the corrosion rate was less than 3%, whereas it decreased when the corrosion rate was more than 3%. On the other hand, the bond strength of specimens without stirrups decreased as the corrosion rate increased. The effect of rebar diameter was less significant compared to those of stirrup spacing and corrosion rate. A bond strength model for pull-out specimens was proposed considering stirrup ratio and corrosion rate, and the model showed the lowest error among the previous models.

Static Shear Strength of Cast-in Anchors with Stirrup Reinforcement (스터럽 보강 선설치 앵커의 정적 전단하중에 대한 저항 강도)

  • Park, Yong Myung;Jo, Sung Hoon;Kim, Tae Hyung;Kang, Choong Hyun;Kim, Jae Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2016
  • An experimental study was conducted to evaluate the static shear strength of stirrup-reinforced cast-in anchors. The test parameters considered herein are an existence of front bearing bar and concrete crack. M36 anchor was used with an edge distance of 180mm. HD-10 bars were used for all reinforcing bars and the stirrups were placed with 100mm spacing. The shear resistance increased by 16% when the front bearing bar was installed. Meanwhile, the resistance reduced only 5% in the cracked concrete compared with the uncracked concrete. The test results showed that ACI 318 and ETAG 001 specifications could estimate the shear strength of stirrup-reinforced anchors conservatively and a rational method was proposed. A consideration on the fracture strength of stirrup-reinforced anchor is also given.

Assessment of Flexural Strengthening Behavior Using the Stirrup-Cutting Near Surface Mounted(CNSM) CFRP strip (스터럽 절단 탄소섬유판 표면매립공법의 휨 보강 성능 평가)

  • Moon, Do Young;Oh, Hong Seob;Zi, Goang Seup
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.102-112
    • /
    • 2012
  • Recently, the near surface mounted (NSM) FRP strengthening technique has been actively applied to deteriorated concrete structures for rehabilitation purposes. However, the use of this conventional NSM technique could be restricted due to the insufficient height or strength of the concrete cover. In this study, the stirrup-Cutting Near Surface Mounted(CNSM) technique was considered as an alternative, whereby NSM strips are placed at a deeper level, namely at the level of the main steel reinforcement. A flexural test of a concrete beam strengthened with CNSM technique was performed and the results were then compared to those for a concrete beam strengthened by the conventional NSM technique. The embedment length of the CFRP strips was varied in order to increase the effect of the anchoring depth of the NSM and CNSM CFRP strips in the beam specimens. From the results of the test, the beam with the CNSM CFRP strip showed typical structural behavior similar to that of the beam with the NSM CFRP strip. Moreover, there was no apparent structural degradation resulting from the stirrup partial-cutting. Consequently, the CNSM strengthening technique can be suitably utilized for extensively damaged concrete structures where it is difficult to apply the conventional NSM technique.

Dynamic Shear Strength of Stirrup-reinforced Cast-in Anchors by Seismic Qualification Tests (스터럽 보강 선설치 앵커의 지진모의실험에 의한 동적 전단 저항강도 평가)

  • Kim, Tae Hyung;Park, Yong Myung;Kang, Choong Hyun;Lee, Jong Han
    • Journal of Korean Society of Steel Construction
    • /
    • v.30 no.2
    • /
    • pp.67-76
    • /
    • 2018
  • An experimental study was conducted to evaluate the breakout strength of stirrup-reinforced cast-in anchors under dynamic shear loadings. The shear loadings were applied in the manner specified in the ACI 355.2 and ETAG 001 for the seismic qualification tests. Test specimens were fabricated with M36 anchor (edge distance, 180mm) reinforced with D10 stirrups (spacing, 100mm). The specimens reached almost the breakout strength and thereafter fracture of anchor occurred. Additional tests with M42 anchor (edge distance, 160mm) reinforced with D6 bars (spacing, 100mm) were also conducted. The experimental results showed that the dynamic shear strength was not less than the static resistance. Based on the test results, it was shown that ACI 318 and ETAG 001 specifications estimate the breakout strength of stirrup-reinforced anchors conservatively as more reinforcement is provided.

Effect of Concrete Strength on Stirrup Effectiveness in Shear Behavior of Concrete Beams (보의 전단거동에서 콘크리트 압축강도가 스터럽 유효성에 미치는 영향)

  • 이영재;서원명;김진근;박찬규
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.6
    • /
    • pp.173-182
    • /
    • 1996
  • An experimental research was carried out to investigate the effect of thc compressive strength of concrete on the stirrup effectiveness in shear behavior of concrete beams. For this purpose. total 24 beams of section dimension of $300{\times}600mm$ were tested: 4 specimens without web reinforcement and 20 specimens with web reinforcement in the form of vertical stirrups. Main variables were two levels(norma1 and high strength) of the compressive strength of concrete and six types of t h e shear rcinfor.cement ratios. Prior to experiment, for given sections and assumed material constants, the reference shear reinforcement ratio(${\rho}_vACI$) which leads to the flexure failure using the provisions of the ACI Building Code(AC1 318-95) was calculated. and the shear reinforcement ratios were relatively selected from the value of ${\rho}_vACI$. From test results, it was shown that thc safety factor of ACI eyuation for p1,ediction of shear strength was decreased with increasing the compressive strength of concrete in beams without stirrups. However. it was observed that as the amount of' stirrup is increased, the safety factor for high strength conci,ete beams with high stirrup ratio is ensured more than that for normal strength concrete beams. Therefore i t appears that the stirrup effectiveness of high strength concrete beams is greater than that of normal strength concrete beams.

Repeated Loading Test of Shear-Critical Reinforced Concrete Beams with Headed Shear Reinforcement (헤디드 바를 전단철근으로 사용한 철근콘크리트 보의 전단거동에 관한 반복하중 실험)

  • Kim, Young-Hoon;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.1 s.91
    • /
    • pp.47-56
    • /
    • 2006
  • The repeated loading responses of four shear-critical reinforced concrete beams with two different shear span-to-depth ratios, were studied. One series of beams was reinforced using pairs of bundled stirrups with $90^{\circ}$ standard hooks, haying free end extensions of $6d_b$. The companion beams contained shear reinforcement made with larger diameter headed bars anchored with 50mm diameter circular heads. A single headed bar had the same area as a pair of bundled stirrups and hence the two series were comparable. The test results indicate that beams containing headed bar stirrups have a superior performance to companion beams containing bundled standard stirrups with improved ductility, larger energy absorption and enhanced post-peak load carrying capability. Due to splitting of the concrete cover and local crushing, the hooks of the standard stirrups opened resulting in loss of anchorage. In contrast, the headed bar stirrups did not lose their anchorage and hence were able to develop strain hardening and also served to delay buckling of the flexural compression steel. Excellent load-deflection predictions were obtained by reducing the tension stiffening to account for repeated load effects.

Flexural-Shear Behavior of Beam Members according to the Spacing of Stirrups and Tension Steel Ratio (스터럽간격과 인장철근비에 따른 고강도 콘크리트 보의 파괴거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Choi, Goh-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.4
    • /
    • pp.513-521
    • /
    • 2003
  • Existing tests results have shown that confining the concrete compression region with closed stirrups improves the ductility and load-carrying capacity of beams. However, only few researchers have attempted to utilize the beneficial effects of the presence of these stirrups in design. This paper presents the result of experimental studies on the load-deflection behavior and the strengthening effect of laterally confined structural high-strength concrete beam members in which confinement stirrups have been introduced into the compression regions. Fifteen tests were conducted on full-scale beam specimens having concrete compressive strength of 41 MPa and 61 MPa. Different spacing of stirrups(0.25∼1.0d) and amount of tension steel($0.55{\sim}0.7{\rho}_b$) as major variables were investigated. And also, this study present an appropriate shear equation for decision of ultimate failure modes of high-strength concrete beams according to stirrup spacing. The equation is based on interaction between shear strength and displacement ductility. Prediction of failure mode from presented method and comparison with test results are also presenteded

Predicting Actual Strength of Shear Reinforcement Using Effective Stirrup Concept (유효 스터럽 개념을 이용한 전단보강근의 강도 예측)

  • Kwon, Ki-Yeon;Yang, Jun-Mo;Lee, Joo-Ha;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.99-107
    • /
    • 2008
  • This paper presents the prediction of the actual strength of shear reinforcement on the basis of the concept of effective stirrups. The prediction method incorporating the shear cracking angle was proposed with the estimation by the Modified Compression Field Theory (MCFT). To check the validity of the method, discussion of the current ACI 318-05 and comparison of 39 test results from the literature including author's retrospective test data were made. The influencing factors of compressive concrete strength and type of shear-reinforcement were also investigated. Furthermore, two full-scale beam specimens shear-reinforced with headed bars were tested to demonstrate the applicability of the proposed method.

Experimental Study on Effect of Confinement Details for Lap Splice of Headed Deformed Reinforcing Bars in Grade SD400 and SD500 (구속상세가 SD400 및 SD500 확대머리 이형철근의 겹침이음에 미치는 영향에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.1
    • /
    • pp.62-71
    • /
    • 2015
  • KCI 2012 and ACI318-11 contains development length provisions for the use of headed deformed bars in tension and does not allow their tension lap splices. In ACI318-11, the confinement factor, such as transverse reinforcement factor, is not used to calculate the development length of headed bars. The purpose of this experimental study is to evaluate the effect of confinement details to the lap splice performance of headed deformed reinforcing bars in grade SD400 and SD500. The confinement details are stirrups and tie-down bars in lap zone. Test results showed that specimens with only stirrups had the brittle failure and could not increase lap strengths, and that specimens with composite confinements by stirrups and tie-down bars had the flexural strengths over than nominal flexural strengths. Stirrups with tie-down bars can have an effect on improvement in lap splice of headed bars in grade SD400 and SD500.

An Experimental Study on the Stirrup Effectiveness in Reinforced Concrete Beams (철근콘크리트보의 스터럽 효과에 관한 실험적 연구)

  • Lee, Young-Jae;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2005
  • The main objective of this study is to investigate the behavior of NSC and HSC beams with stirrups. Main variables were the concrete compressive strength and amount of vertical stirrups. A total of 24 beams was tested; 4 beams without web reinforcement and 20 beams with web reinforcement in the form of vertical stirrups. Main variables were 2 different compressive strengths of concrete of 26.9MPa and 63.5MPa, 5 different spacing of stirrups of 200, 150, 120, 100 and 90mm. Therefore, the results were compared with the strengths predicted by the equations of ACI code 318-99 and other researchers. The shear reinforcement ratio, where the test beams were failed simultaneously under flexure and shear, were $0.63{\rho}_{vmax}$ for NSC beams and $0.53{\rho}_{vmax}$ for HSC beams, respectively. The ACI code equation was found to be very conservative for shear design.