• 제목/요약/키워드: 스타일 합성 네트워크

검색결과 2건 처리시간 0.021초

적대적 생성 신경망을 통한 얼굴 비디오 스타일 합성 연구 (Style Synthesis of Speech Videos Through Generative Adversarial Neural Networks)

  • 최희조;박구만
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권11호
    • /
    • pp.465-472
    • /
    • 2022
  • 본 연구에서는 기존의 동영상 합성 네트워크에 스타일 합성 네트워크를 접목시켜 동영상에 대한 스타일 합성의 한계점을 극복하고자 한다. 본 논문의 네트워크에서는 동영상 합성을 위해 스타일갠 학습을 통한 스타일 합성과 동영상 합성 네트워크를 통해 스타일 합성된 비디오를 생성하기 위해 네트워크를 학습시킨다. 인물의 시선이나 표정 등이 안정적으로 전이되기 어려운 점을 개선하기 위해 3차원 얼굴 복원기술을 적용하여 3차원 얼굴 정보를 이용하여 머리의 포즈와 시선, 표정 등의 중요한 특징을 제어한다. 더불어, 헤드투헤드++ 네트워크의 역동성, 입 모양, 이미지, 시선 처리에 대한 판별기를 각각 학습시켜 개연성과 일관성이 더욱 유지되는 안정적인 스타일 합성 비디오를 생성할 수 있다. 페이스 포렌식 데이터셋과 메트로폴리탄 얼굴 데이터셋을 이용하여 대상 얼굴의 일관된 움직임을 유지하면서 대상 비디오로 변환하여, 자기 얼굴에 대한 3차원 얼굴 정보를 이용한 비디오 합성을 통해 자연스러운 데이터를 생성하여 성능을 증가시킴을 확인했다.

GAN을 이용한 동영상 스타일 생성 및 합성 네트워크 구축 (A Video Style Generation and Synthesis Network using GAN)

  • 최희조;박구만;김상준;이유진;상혜준
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2021년도 추계학술발표대회
    • /
    • pp.727-730
    • /
    • 2021
  • 이미지와 비디오 합성 기술에 대한 수요가 늘어남에 따라, 인간의 손에만 의존하여 이미지나 비디오를 합성하는데에는 시간과 자원이 한정적이며, 전문적인 지식을 요한다. 이러한 문제를 해결하기 위해 최근에는 스타일 변환 네트워크를 통해 이미지를 변환하고, 믹싱하여 생성하는 알고리즘이 등장하고 있다. 이에 본 논문에서는 GAN을 이용한 스타일 변환 네트워크를 통한 자연스러운 스타일 믹싱에 대해 연구했다. 먼저 애니메이션 토이 스토리의 등장인물에 대한 데이터를 구축하고, 모델을 학습하고 두 개의 모델을 블렌딩하는 일련의 과정을 거쳐 모델을 준비한다. 그 다음에 블렌딩된 모델을 통해 타겟 이미지에 대하여 스타일 믹싱을 진행하며, 이 때 이미지 해상도와 projection 반복 값으로 스타일 변환 정도를 조절한다. 최종적으로 스타일 믹싱한 결과 이미지들을 바탕으로 하여 스타일 변형, 스타일 합성이 된 인물에 대한 동영상을 생성한다.