• 제목/요약/키워드: 스키드 마크

검색결과 17건 처리시간 0.022초

자동차 스키드마크 인식을 위한 FE-SM/SONN (The FE-SM/SONN for Recognition of the Car Skid Mark)

  • 구건서
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권1호
    • /
    • pp.125-132
    • /
    • 2012
  • 본 논문은 차량이 급제동으로 인해 도로 위에 생성된 스키드마크와 같이 형태가 모호하게 나타난 영상을 인식하기 위해 FE-SM/SONN을 제안하였다. FE-SM/SONN은 타이어 트레드 패턴이 뭉개져서 나타나는 스키드마크 경우, 그 패턴이 모호한 영상으로 취득된다. 이를 인식하기 위해 퍼지 이론과 트레드 패턴의 특징을 이용한 자기 조직 신경망 인식기를 통해 스키드마크를 인식하는 방법이다. 이러한 실험을 위해 48개 타이어모델과 144개 스키드마크가 사용되었고, 전체 인식율은 89%이며, 비교 분석을 위해서는 기존 역전파 인식기에 비해 인식률 면에서 13.51%가 향상되었고, FE-MCBP에 비해 8.78% 향상을 보였다. 이 논문의 기대효과로는 모호한 영상의 특징을 추출하여 인식이 가능하였고, 트레드 패턴 영상이 그레이 영상으로 나타날 경우도 퍼지 이론에 의해 인식이 가능한 것으로 연구결과 나타났다.

스키드마크를 이용한 교통사고 조사 (Investigation of Traffic Accident using Skid Mark)

  • 홍유식
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권1호
    • /
    • pp.113-120
    • /
    • 2010
  • 교통사고가 발생 한 경우에 스키드마크는 자동차 속도 산출을 위해서 매우 중요한 요소이다. 객관적이고, 과학적인 수사를 위해, 교통 사고는 공정한 기록에 의해서, 컴퓨터 모의 실험, 및 학문, 그리고 충돌 사고 역동성, 도로 및 교통 공학으로 검증되어야 한다. 본 논문에서는, 교통사고, 과학, 객관적인 방법을 이용하여 진짜 교통사고 및 결과를 재현하였다. 모의실험 결과 포장도로와 비포장도로에서는 비포장도로의 제동시간이 포장도로의 제동시간 보다 짧다는 것이 입증되었다.

불완전 제동구간과 활주구간의 감속도 변화에 대한 연구 (A Study on Acceleration of Transient Brake Section and Skidding Section)

  • 김길배;정우택;류태선;오영태
    • 대한교통학회지
    • /
    • 제30권5호
    • /
    • pp.83-90
    • /
    • 2012
  • 운전자가 위급한 상황을 인지하였을 경우 일반적으로 가장 먼저 급제동 조치를 취하게 된다. 그렇기 때문에 교통사고 현장에서 가장 흔하게 볼 수 있는 흔적이 급제동흔적, 즉 스키드마크라 할 수 있다. 오늘날까지 스키드마크의 길이를 측정해서 사고 당시 속도를 추정하고 이를 통해 과속 여부를 판단하고 있다. 그러나 스키드마크의 길이를 통해 추정된 속도는 불완전 제동구간의 감속정도를 배제한 활주직전의 속도로써 제동직전 속도와는 다소 차이를 보인다. 최근 연구에서 제동직전 속도를 추정하기 위해 실차 실험을 통해 몇가지 방법이 제시되었으나, 물리적 원칙에 입각하여 제동직전 속도를 산정할 수 있는 근본적인 방법을 제시하지 못하였다. 그 중에서도 가장 핵심적인 사항이 불완전 제동구간과 활주구간의 감속도를 파악하는 것이며, 본 연구에서는 승용차와 대형차의 실차 급제동 실험을 통해서 불완전 제동구간과 활주구간의 감속도 경향을 분석하였다. 본 연구는 자동차의 실질적인 제동직전 주행속도를 산출할 수 있도록 기초정보를 제공하고 나아가서는 현행보다 과속 적용의 범주가 확대됨에 따라 운전자의 경각심을 유발하여 국가 교통사고 감소에 일조할 수 있을 것으로 기대된다.

스키드마크 및 요마크를 이용한 차량사고재구성 (The Vehicle Accident Reconstruction using Skid and Yaw Marks)

  • 이승종;하정섭
    • 한국정밀공학회지
    • /
    • 제20권12호
    • /
    • pp.55-63
    • /
    • 2003
  • The traffic accident is the prerequisite of the traffic accident reconstruction. In this study, the traffic accident (forward collision) and traffic accident reconstruction (inverse collision) simulations are conducted to improve the quality and accuracy of the traffic accident reconstruction. The vehicle and tire models are used to simulate the trajectories for the post-impact motion of the vehicles after collision. The impact dynamic model applicable to the forward and inverse collision simulations is also provided. The accuracy of impact analysis for the vehicular collision depends on the accuracy of the coefficients of restitution and friction. The neural network is used to estimate these coefficients. The forward and inverse collision simulations for the multi-collisions are conducted. The new method fur the accident reconstruction is proposed to calculate the pre-impact velocities of the vehicles without using the trial and error process which requires the repeated calculations of the initial velocities until the forward collision simulation satisfies with the accident evidences. This method estimates the pre-impact velocities of the vehicles by analyzing the trajectories of the vehicles. The vehicle slides on a road surface not only under the skidding during an emergency braking but also under the steering. A vehicle over steering or cornering with excessive speed loses the traction and leaves tile yaw marks on the road surface. The new critical speed formula based on the vehicle dynamics is proposed to analyze the yaw marks and shows smaller errors than ones of the existing critical speed formula.

활주거리와 제동전 속도간의 상관관계에 관한 연구 (A Study on Correlation Between Skid Distance and Pre-Braking Speed)

  • 정우택;오영태;박영수;류태선
    • 대한교통학회지
    • /
    • 제29권3호
    • /
    • pp.115-122
    • /
    • 2011
  • 이 논문은 자동차의 급제동시 발생되는 스키드마크(skid mark, 활주거리)를 통해 제동직전 속도(Pre-braking Speed)를 정확히 산정하기 위한 방법론을 제시하고자 한다. 운전자는 전방에 위급한 상황이 전개되거나 불의의 사고에 처하게 되었을 경우 통상 급제동조치를 취하게 되며, 정지거리에 따라 사고를 당할 수도 있다. 자동차의 정지거리에 있어서 영향을 끼치는 요인은 운전자의 인지반응시간, 자동차 제동장치의 성능, 노면의 상태 등을 꼽을 수 있으나, 가장 중요한 요인은 제동직전 속도(Pre-Braking Speed)라고 할 수 있다. 현재 교통사고의 조사분야에서는 skid mark의 길이에 근거한 활주직전 속도(Preskidding Speed)를 산정하여 과속 여부를 판단하고 있으나, 정확한 사고원인 규명을 위해서는 불완전제동시간 동안 감속된 속도를 고려한 제동직전 속도의 산정이 필요할 것으로 판단된다. 따라서, 본 연구에서는 교통사고시 자동차의 정확한 속도정보를 산정하기 위한 방법을 제안하고자 하며, 또한 이 연구가 향후 교통안전차원에서 자동차의 특성을 이해하는데 있어서 일조할 수 있기를 기대한다.

활주 직전과 제동 직전 속도의 상관관계 규명에 관한 연구 (Relationships Between Pre-Skidding and Pre-Braking Speed)

  • 류태선;전진우;박홍한;이수범
    • 대한교통학회지
    • /
    • 제27권1호
    • /
    • pp.43-51
    • /
    • 2009
  • 이 논문은 타이어-노면간 마찰계수(drag factor)와 노면에 발생된 스키드마크를 통해 제동직전 속도(pre-braking speed) 산정을 정확하게 하기 위한 방법론을 제시하고자 한다. 제동직전 속도(pre-braking speed)와 활주직전 속도(pre-skidding speed)간 어떠한 상관관계가 있는지 판단하기 위해 실차 주행 및 제동실험을 통해 데이터가 수집되었다. 두 대의 차량에 fifth wheel(오륜) 장비, 스피드건, vericom 2000 등 다양한 측정장비를 탑재하여 제동실험이 수행되었으며, 자동차 속도, 제동거리, 활주거리, 감속도 등이 정밀 측정되었다. 실험자료의 분석을 통해 노면 마찰계수값과 활주직전 속도를 산정하고, 이후 활주직전 속도와 제동직전 속도를 비교하여 이들간의 상관관계를 규명하였다. 결과적으로 산정된 마찰계수값은 현재 일반적으로 적용되고 있는 0.8보다 높았으며, 제동직전 속도는 활주직전 속도보다 $5{\sim}10km/h$ 정도 높은 것으로 나타났다. 향후에는 다양한 차종과 노면조건에 대한 후속실험을 통해 더욱 정교한 한국형 분석모형의 개발과 실무적용이 필요할 것으로 판단된다.

퍼지 규칙을 이용한 교통사고 연구 (A Study on Traffic Accident using Fuzzy Rules)

  • 홍유식;김태달;김금열
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2006년도 춘계학술발표대회
    • /
    • pp.353-356
    • /
    • 2006
  • 자동차사고는 소득증대와 차량증가와 함께 도로확충 및 정비가 필수임에도 불구하고 자동차 사고는 갈수록 대형화되고 있다. 그러나 교통사고 발생시 누가 가해자이고 피해자인지를 정확하게 구별하기는 매우 어려운 일이다. 특히 교통사고 발생시 목격자가 없을 경우에는 교통사고원인을 규명하기가 더욱 어려워진다. 본 연구에서는 이러한 문제점을 해결하기위해서 뺑소니 교통사고 발생시에 퍼지 및 지능형 알고리즘을 시용해서 스키드마크 길이를 입력하면 도로의 종류, 타이어의 종류, 자동차 종류, 날씨 조건을 고려하여 최적의 자동차 속도를 산출하였으며, 컴퓨터 시물레이션을 통해서 기존의 방법보다 20-30% 정확하게 예측하였다.

  • PDF

무선 센서 네트워크 기반의 실시간 차량 안전 시스템 설계 및 구현 (Design and Implementation of Real-Time Vehicle Safety System based on Wireless Sensor Network)

  • 홍유식;이채우;장이채
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국지능시스템학회 2008년도 춘계학술대회 학술발표회 논문집
    • /
    • pp.366-369
    • /
    • 2008
  • 무선 센서 네트워크(Wireless Sensor Network)는 차세대 IT 기술로서 소형, 저가, 저전력을 필요로 하며, 외부 환경의 모니터링과 제어기능을 수행할 수 있다. 이것은 소형 장치 안에 마이크로프로세서, 각종 센서, 액추에이터, 유 ${\cdot}$ 무선 통신 장치를 내장하는 수백 혹은 수천 개의 센서 노드로 구성된다. 본 논문에서는 이러한 센서 네트워크를 이용하여 기상의 악천 후 속에서 차량 및 도로 상황 정보를 실시간으로 미리 획득하고 분석하여 운전자에게 미리 도로의 안전속도를 통보할 수 있는 실시간 차량 안전속도 서비스 시스템을 설계하고 구현된 결과를 보여 주고자 한다. 본 시스템은 노면의 종류 및 기상 상태 등에 대한 정보를 수집하여 이를 바탕으로 운전자에게 안전 속도를 알려줌으로써 교통사고를 효과적으로 예방할 수 있는 방법을 제공할 수 있다.

  • PDF

속도계를 이용한 스키드 마크로 인한 두께 변동량 추정 (Estimation of thickness variation due to skid mark Using Speedometer)

  • 이영교;조성은;김상우;홍성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.40-40
    • /
    • 2000
  • Generally a RF AGC controls the roll gap using the variation of rolling force caused by the roll eccentricity and the entry thickness of material, but these can not be classified. The Feed- forward AGC method, which controls the next stand roll 9ap by estimation the skid mark of the previous stand output thickness is needed to supplement the shortage of RF AGC. In this paper, an improved filtering method of skid mark which take account of the kinds of materials, the final objective thickness and the roll speed is proposed, In addition, an improved estimation method of control point using the speedometer and looper angle is suggested, Via simulation, the performance improvement of the suggested FF AGC method is verified.

  • PDF

활주흔과 정지지점으로부터 수학적방법과 최적화방법에 의한 교통사고 재현기법에 관한 연구 (Accident Reconstruction Analysis by Mathematical and Optimization Method from Skid Mark and Stopped Position)

  • 유장석;장명순
    • 대한교통학회지
    • /
    • 제20권4호
    • /
    • pp.7-17
    • /
    • 2002
  • 본 연구는 차대차 충돌사고시 차량충돌위치와 충돌속도 분석기법을 사고사례를 통해 연구하였다. 차량충돌위치는 사고현장 노면에 생성된 타이어 마크를 이용하여 수학적방법으로, 충돌속도는 실제 사고차량 최종정지위치와 모의충돌실험을 통해 분석된 차량 최종정지위치와의 차를 목적함수로 하여 이를 최소로 수렴하는 최적화기법을 이용하였다. 연구결과, 승용차량 오른쪽 앞바퀴 위치는 중앙선으로부터 좌측으로 0.45m 떨어진 진행방향 1차로 상이고, 왼쪽 앞바퀴는 중앙으로부터 좌측으로 0.345m 떨어진 지점에 위치한 상태이다. 최적화기법을 이용하여 사고차량의 충돌속도를 분석한 결과. 최적화의 오차율이 0.8%인 경우 충돌속도는 승용차량 67.75Km/h, 짚형 승용차량 29.67Km/h로 분석되었으며, 충돌 후 x축에 대한 속도는 승용차량 20.0Km/h, 짚형승용차량 15.69Km/h이고, y축에 대한 속도는 승용차량 15.68Km/h, 짚형 승용차량 7.66Km/h로 분석되었다. 반면, 기존 충돌속도 분석모형식을 이용하여 사고차량의 충돌속도를 분석한 결과 승용차량 64.97Km/h, 짚형승용차량 31.27Km/h로 도출되었다. 따라서, 최적화기법을 통해 분석한 충돌속도와 기존 분석모형식을 이용하여 분석한 충돌속도와의 오차가 승용차량 2.78Km/h, 짚형승용차량 1.6Km/h로 최적화기법을 이용하여 분석한 결과에 대한 신뢰성이 높은 것으로 연구결과 도출되었다 따라서, 추후 차 대 차 충돌사고를 분석함에 있어 타이어 흔적을 이용한 수학적방법과 모의충돌실험을 통한 최적화기법을 이용하면 충돌속도는 물론 충돌전.후 차량의 운동특성에 대한 정확한 분석이 이루어질 수 있을 것으로 기대된다.