• Title/Summary/Keyword: 스퀼러

Search Result 8, Processing Time 0.02 seconds

Three-Dimensional Flow and Aerodynamic Loss in the Tip-Leakage Flow Region of a Turbine Blade with Pressure-Side Winglet and Suction-Side Squealer (압력면윙렛/흡입면스퀼러형 터빈 동익 팁누설영역에서의 3차원유동 및 압력손실)

  • Cheon, Joo Hong;Kang, Dong Bum;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.5
    • /
    • pp.399-406
    • /
    • 2014
  • Three-dimensional flow and aerodynamic loss in the tip-leakage flow region of a turbine blade equipped with both a pressure-side winglet and a suction-side squealer have been measured for the tip gap-to-span ratio of h/s = 1.36%. The suction-side squealer has a fixed height-to-span ratio of $h_s/s$ = 3.75% and the pressure-side winglet has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results are compared with those for a plane tip and for a cavity squealer tip of $h_{ps}/s$ = 3.75%. The present tip delivers lower loss in the passage vortex region but higher loss in the tip-leakage vortex region, compared to the plane tip. With increasing w/p, its mass-averaged loss tends to be reduced. Regardless of w/p, the present tip provides lower loss than the plane tip but higher loss than the cavity squealer tip.

Effects of Pressure-Side Winglet at an Elevation of Tip Surface on the Tip-Leakage Flow and Aerodynamic Loss Downstream of a Turbine Blade Equipped with Pressure-Side Squealer Tip (압력면익단소익이 터빈 동익 압력면스퀼러팁 하류의 팁누설유동 및 압력손실에 미치는 영향)

  • Cheon, Joo Hong;Lee, Sang Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.10
    • /
    • pp.645-651
    • /
    • 2016
  • Effects of pressure-side winglet width on the tip leakage flow and aerodynamic loss downstream of a turbine blade with a pressure-side squealer rim have been investigated for the tip gap-to-span ratio of h/s = 1.36%. The pressure-side squealer has a fixed height-to-span ratio of $h_p/s=3.75%$ and the pressure-side winglet, which is installed at an elevation of tip surface, has width-to-pitch ratios of w/p = 2.64%, 5.28%, 7.92% and 10.55%. The results show that with increasing w/p, aerodynamic loss in the passage vortex region decreases, whereas that in the leakage flow region increases. As a result, the mass-averaged loss coefficient all over the measurement plane tends to decrease minutely with the increment of w/p. It is concluded that the pressure-side winglet for the pressure-side squealer tip can hardly contribute to the tip-leakge loss reduction.

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Yong-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.60-68
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

Effect of Groove Shape of Blade Tip on Tip Surface Heat Transfer Coefficient Distributions of a Turbine Cascade (블레이드 팁의 Groove 형상이 터빈 캐스케이드 팁 열전달 계수분포에 미치는 영향에 대한 실험적 연구)

  • Nho, Young-Cheol;Jo, Yong-Hwa;Lee, Youn-Jin;Kim, Hark-Bong;Kwak, Jae-Su
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.311-318
    • /
    • 2010
  • In this study, the conventional plane tip, double squealer tip, and various groove tip blades were tested in a linear cascade in order to measure the effect of the tip shapes on tip surface heat transfer coefficient distributions. Detailed heat transfer coefficient distributions were measured using a hue-detection based transient liquid crystals technique. Two tip gap clearances of 1.5% and 2.3% of blade span were investigated and the Reynolds number based on cascade exit velocity and chord length was $2.48{\times}10^5$. Results showed that the overall heat transfer coefficients on the tip surface with various grooved tips were lower than those with plane tip blade. The overall heat transfer coefficient on grooved along suction side tip was lower than that on the squealer tip.

  • PDF

Numerical Investigation of Flow and Heat Transfer Characteristics on the Gas Turbine Blade with a Squealer Tip (스퀼러팁을 이용한 가스터빈 내에서의 3차원 유동 및 열전달 특성에 관한 연구)

  • Jung, Jong-Hun;Moon, Young-J.;Kim, Jin-Young
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.159-162
    • /
    • 2008
  • In this paper, a numerical simulation of three-dimensional flow field and heat transfer coefficient distribution are conducted for two types of gas turbine blade with plane and squealer tips. The numerical results show that gas turbine blade with squealer tip considerably changes the flow structures near the tip regions of pressure and suction sides, so the overall heat transfer coefficients on the tip and shroud with squealer tip are lower than those with the plane tip blade. Finally, the effect of tip gap clearance on the flow field and heat transfer characteristics are investigated.

  • PDF

Effect of Blade Tip Geometry on Heat Transfer Coefficients on Gas Turbine Blade Tips and Near Tip Regions (가스터빈 블레이드 끝단 형상에 따른 블레이드 끝단 및 그 주변에서의 열전달 계수 변화)

  • Kwak Jae-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.4 s.247
    • /
    • pp.328-336
    • /
    • 2006
  • Detailed heat transfer coefficient distributions an two. types of gas turbine blade tip, plane tip and squealer tip, were measured using a hue-detection base transient liquid crystals technique.. The heat transfer coefficients an the shroud and near tip regions of the pressure and suction sides af the blade were also. measured. The heat transfer measurements were taken at the three different tip gap clearances af 1.0%, 1.5%, and 2.5% of blade span. Results shaw the overall heat transfer coefficients on the tip and shroud with squealer tip blade were lower than those with plane tip blade. By using squealer tip, however, the reductions af heat transfer coefficients near the tip regions of the pressure and suction sides were nat remarkable.

Effect of Turbine Blade tip shape on the Total Pressure Loss of a Turbine Cascade (블레이드 팁 형상이 터빈 캐스케이드 전압 손실에 미치는 영향에 대한 연구)

  • Lee, Ki-Seon;Park, Seoung-Duck;Noh, Young-Chul;Kim, Hak-Bong;Kwak, Jae-Su;Jun, Yong-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • Leakage flow through turbine blade tip gap causes strong leakage vortex near the blade suction side and induces large aerodynamic losses. In this study, the conventional plane tip and various squealer tip blades were tested in a linear cascade in order to measure the effect of the tip shape on the total pressure loss. Three tip gap clearances of 0.6%, 1.3%, and 2.0% of blade span were tested. Flow measurement was conducted at one chord downstream from the trailing edge with a five-hole probe. Results showed that the leakage vortex was stronger than passage vortex and the mass averaged overall total pressure loss through the cascade was the lowest for suction side blade tip case. For all tested cases, the area averaged overall total pressure loss was increased as the tip clearance increased.

Numerical Analysis of Heat Transfer and Flow Characteristics on Squealer Tip of Gas Turbine Blade (가스터빈 블레이드 팁의 열전달과 유동 특성에 대한 수치적 해석)

  • Jiao, Liu;Kang, Youngseok;Kim, Donghwa;Cho, Jinsoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1062-1070
    • /
    • 2016
  • The heat transfer and flow characteristics of gas turbine blade tip were investigated in this paper by using the conjugate heat transfer analysis. The rotor inlet boundary condition profile which was taken from the first stage nozzle outlet was used to analyse. The profile contained the velocity and temperature information. This study presents the influence of tip clearance about aerodynamic loss, heat transfer coefficient and film cooling effectiveness with the squealer tip designed blade model which tip clearance variation range from 1% to 2.5% of span. Results showed that the aerodynamic loss and the heat transfer coefficient were increased when the tip clearance was increased. Especially when the tip clearance was 2% of the span, the average heat transfer coefficient on the tip region was increased obviously. The film cooling effectiveness of tip region was increasing with decreasing of the tip clearance. There was high film cooling effectiveness at cavity and near tip hole region.