• Title/Summary/Keyword: 스퀴즈

Search Result 64, Processing Time 0.021 seconds

Vibration Control of a Sealed and Pressurized Squeeze Film Damper Supported Rotor (가압 밀봉된 스퀴즈 필름 댐퍼로 지지된 로터의 진동제어)

  • 고영호;이건복;김창호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.589-593
    • /
    • 1995
  • The vibration of rotors in high speed sometimes leads to system failure or reduces the system life, and has a direct connection with stability. In this paper, the system's modelling was conducted in experimentally and the controller was designed to reduce the vibration due to the rotor unbalance using Squeeze Film Damper(SFD). SFD vibration control was achieved in constant rotating speed based on the controller designed. the control was confirmed working quite well in terms of both numerical simulation and experiment.

  • PDF

An Experimental study on the Characteristics of the Emulsion Lubrication (이멀션윤활특성에 관한 실험적 연구)

  • 이종순;이봉구;정재련;지창헌
    • Tribology and Lubricants
    • /
    • v.2 no.2
    • /
    • pp.12-19
    • /
    • 1986
  • Using emulsion lubricant whose cooling effect and incombustibility are good and which is economical, I investigated lubricative mechanism and the behavior of scattered particles in the elastic fluid lubrication region with the line contact between rollers and plates and the light interference system. The results of the study are as follows: (1) The flow in the squeeze oil film is considered as comparatively wide clearance and narrow one, and in the former case the effect of the distribution of particles and the velocity on the flow. In the latter case, emulsion particles stay in the clearance an the oil film changes with the decrease of the oil film thickness. (2) In the wide clearance the velocity difference of the flow O/W or W/O emulsion is inverse proportional to the particle size. In the narrow clearance the distribution of the remained drops is different from one another and the scattered particles change more easily in O/W type than in W/O type. (3) At the beginning of the EHL the stagnation region with slow flowing velocity exists and the behavior at the region is different depending on the particle size. (4) By observing the dischromatic light interference line, emulsion oil passing through EHL region and the crack behavior at the beginning of EHL were found.

A Study on the Load Characteristics of a Swash Plate Piston Pump Holder (Cradle) with Grooves Considering the Squeeze Effect (스퀴즈 효과를 고려한 사판식 피스톤 펌프 홀더의 그루브 유무에 따른 부하특성에 대한 연구)

  • Ju, Gyeong Jin;Seol, Sang Suk;Kim, Yong Gil;Kim, Soo Tae
    • Journal of Drive and Control
    • /
    • v.17 no.1
    • /
    • pp.21-26
    • /
    • 2020
  • The load characteristics of a piston pump holder due to the squeeze effect are influenced by the surface shape and gap thickness of the holder (cradle). Therefore, the pressure distribution and the load capacity of the piston pump holder due to the squeeze effect are studied by using the CFD software and the surface shape and gap thickness of the piston pump holder are considered. In order to verify the accuracy of numerical results, the load capacities of a circular plate holder are numerically studied, and the accuracy of numerical results is verified by comparing with the theoretical results. Also, the pressure distribution and load capacity of the rectangular plate holder of a piston pump are obtained by using the CFD software. The results show that the load capacity of the square plate holder with grooves is slightly higher at a low gap thickness, but the effects of the number and arrangement of grooves on the load capacity of the holder are weak. We conclude that the load capacity and the maximum pressure are slightly affected due to the existence of grooves on the holder surface, and the fluid storing effect of the holder surface grooves during the operation is likely to prevent the dry-sticking phenomenon.

Identification of Dynamic Stiffness of Squeeze Film Damper using Active Magnetic Bearing System as an Exciter (자기베어링 시스템을 가진기로 이용한 스퀴즈 필름 댐퍼의 동강성 계수 규명)

  • Kim, Keun-Joo;Lee, Chong-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.381-387
    • /
    • 2002
  • In this work, the dynamic characteristics of an oil-lubricated, short SFD with a central feeding groove are derived based on a theoretical analysis considering the effect of a groove. The validity of the analysis is investigated experimentally using an Active Magnetic Bearing (AMB) system as an exciter. For the theoretical solution, the fluid film forces of a grooved SFD are analytically derived so that the dynamic coefficients of a SFD are expressed in terms of its design parameters. For the experimental validation of the analysis, a test rig using AMB as an exciter is proposed to identify the dynamic characteristics of a short SFD with a central groove. As an exciter, the AMB represents a mechatronic device to levitate and position the test journal without any mechanical contact, to generate relative motions of the journal inside the tested SFD and to measure the generated displacements during experiments with fairly high accuracy. Using this test rig, experiments are extensively conducted with different clearance, which is one of the most important design parameters, in order to investigate its effect on the dynamic characteristics and the performance of SFDs. Damping and inertia coefficients of the SFD that are experimentally identified are compared with the analytical results to demonstrate the effectiveness of the analysis. It is also shown that AMB is an ideal device for tests of SFDs.

  • PDF

Test Rig Development for Identification of Rotordynamic Force Coefficients of Squeeze Film Dampers in Automotive Turbocharger Bearing Systems (자동차 터보차저 베어링 시스템에 적용되는 스퀴즈 필름 댐퍼의 동적계수 측정을 위한 실험장치 개발)

  • Hwang, Jisu;Ryu, Keun;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.34 no.1
    • /
    • pp.33-41
    • /
    • 2018
  • This paper describes a new test rig for identification of rotordynamic force coefficients of squeeze film dampers (SFDs) in automotive turbochargers (TCs). Prior studies have mainly concentrated on relatively large-sized SFDs used in aircraft engines, turbocompressors, and turbopumps. The main objective of the current study is to propose a test rig for identification of dynamic force coefficients of small-sized SFDs (a journal diameter of ~11 mm). The current test rig consists of a journal, a SFD cartridge, four support rods, an upper structure, a data acquisition (DAQ) system, and an oil circulation unit. The annular gaps between the journal outer surface and SFD cartridge inner surface create SFD film lands. The damper has two parallel film lands separated by a central groove, having an axial length and depth of 3 mm. Each film land has a length of 4 mm with a $40{\mu}m$ radial clearance. The static load and dynamic impact tests identify the structural characteristics (i.e., stiffness and natural frequency) of the journal and assembled test rig. The measurements show good agreement with predictions. The SFD performance data from this test rig will be used to develop innovative TC rotor systems with improved NVH and reliability characteristics incorporating advanced SFD technology.

The Effect of Compliance Structures Near the Mechanical Heart Valve on Valve Surface Erosion (기계식 인공 판막 주위의 유연성 구조가 표면 괴식에 미치는 영향)

  • Lee, Hwan-Sung;Hwang, Sung-Won;Sun, Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.4
    • /
    • pp.309-315
    • /
    • 2002
  • Since the discovery, in the 1980s, of erosion-pit-induced fractures in implanted mechanical heart valves. cavitation on the surface of mechanical heart valves has been widely studied as a possible cause of pitting. Several factors, including peak dp/dt of the ventricular pressure. maximum closing velocity of the leaflet, and squeeze flow. have been studied as indices of the cavitation threshold. In the present study. cavitation erosion on the surface of a mechanical valve was examined by focusing on squeeze flow and the water hammer phenomenon during the closing period of the valve. In this study, we measures pressure wave forms near a valve and closing velocities of a disk, which were placed in a holder with and without compliance. In case of all holders, pressure drop of below vapor pressure expect at near the surface disk. It was also found that the closing velocity of the disk increased and that cavitation erosion was enhanced too. These results suggest that disk closing velocity during the closing phase has signifiant effects on pitting erosion.

Experimental Identification of the Damping Characteristics of a Squeeze Film Damper with Open Ends and Central Groove (열린 끝단과 중앙 홈을 갖는 스퀴즈 필름 댐퍼의 감쇠 특성에 대한 실험적 규명)

  • Nam Kyu Kim;Tae Ho Kim;Kyungdae Kang
    • Tribology and Lubricants
    • /
    • v.40 no.1
    • /
    • pp.28-37
    • /
    • 2024
  • This paper presents the development of a squeeze film damper (SFD) test rig and experimental identification of the effects of clearance, damper length, journal eccentricity ratio, excitation amplitude, oil supply pressure, and oil flow rate on the damping coefficients of a test SFD with open ends and a central groove. Test data are compared with predictions from a simple model developed for short SFDs with open ends and a central groove. The test results show a significant decrease in the damping coefficient with increasing clearance and a dramatic increase with damper length, which are in good agreement with the simple model predictions. According to the simple model, the damping coefficient is inversely proportional to the cube of the clearance and directly proportional to the cube of the length. An increase in the journal eccentricity ratio results in a dramatic increase in the damping coefficient by as much as 15 times that of the concentric case, particularly at low excitation frequencies. By contrast, the measured damping coefficient remains almost constant with changes in the excitation amplitude and supply pressure, which are not major factors in the damper design. In general, the test data agree well with the simple model predictions, excluding cases that show increases in the SFD length and journal eccentricity, which indicate significant dependency on the excitation frequency.

Measurement of Damping Coefficients of a Squeeze Film Damper with Piston Ring Seal Ends (피스톤 링 실 끝단을 갖는 스퀴즈 필름 댐퍼의 감쇠 계수 측정)

  • Nam Kyu Kim;Yeongchae Song;Tae Ho Kim;Jeonggi Hong;Kyungdae Kang
    • Tribology and Lubricants
    • /
    • v.40 no.2
    • /
    • pp.54-60
    • /
    • 2024
  • This study experimentally identifies the effects of end shape, clearance, total damper length, journal eccentricity ratio, oil supply pressure, and oil flow rate on the damping coefficient of a squeeze film damper (SFD) with piston ring seal ends and a central groove. The SFD is composed of a lubricating fluid flowing between the outer race of a rolling element bearing and cartridge, along with an anti-rotation pin to prevent the rotation of the outer race. The device provides additional viscous damping to a rotating system. Additionally, piston ring seals attached at both ends of the damper increase the damping coefficient of the rotating system by reducing oil leakage. Because these different design conditions affect the damping coefficient of an SFD, we perform experiments including different conditions. Tests show that the damping coefficient increases significantly in the SFD with piston ring seal ends compared with the SFD with open ends. The damping coefficient also increases with increasing total damper length and journal eccentricity ratio, and decreases with increasing clearance. Additionally, in contrast to the trend observed for the SFD with open ends, the damping coefficient for the SFD with piston ring seal ends increases with increasing supply pressure and flow rate as the frequency decreases but shows consistent results as the frequency increases.

Dynamic Behavior Analysis of the Heart Valve Prostheses Considering Squeeze Film Effect During Closing Phase (스퀴즈필름효과를 고려한 인공심장밸브의 닫힘시 동적거동 해석)

  • 천길정
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.2
    • /
    • pp.443-450
    • /
    • 1995
  • An analysis of the dynamics of a mechanical monoleaflet heart valve prosthesis in the closing phase is presented. Employing the moment equilibrium principles on the occluder motion and the squeeze film dynamics of the fluid between the occluder and the guiding strut at the instant of impact, the velocity of the occluder tip and the impact force were computed. The dynamics of fluid being squeezed between the occluder and the guiding struts is accounted for by Reynold's equation. The effect of the fluid being squeezed between the occluder and the guiding strut was to reduce the velocity of the occluder tip at the instant of valve closure as well as dampen the fluttering of the occluder before coming to rest in the fully closed position. The squeeze film fluid pressure changed rapidly from a high positive value to a relatively large negative value in less than 1 msec. The results of this study may be extended for the analysis of cavitation inception, mechanical stresses on the formed elements and valve components as well as to estimate the endurance limits of the prosthetic valves.