양의 열광학 계수를 갖는 실리카를 하부클래드 및 코아에 그리고 음의 열광학 계수를 갖는 폴리머를 상부클래드에 적용한 AWG(Arrayed Waveguide Grating) 파장분할 다중화 소자에 대하여 이차원 스칼라 유한차분법(Scalar Finite Difference Method; SFDM)으로 온도의존 특성을 분석한 결과, 클래드의 굴절률을 변화시키거나 실리카 코어 상부에 실리카 박막이 존재하는 구조에서 박막의 두께를 변화시켜 온도의존 특성을 조절할 수 있음을 확인하였다. 이러한 해석결과에 근거하여 폴리머 상부클래드가 적용된 AWG 소자를 제작하였으며 기존의 실리카 AWG 소자와 특성을 비교분석하였다. 폴리머 상부클래드의 도입에 의해 삽입손실 및 크로스톡은 큰 변화가 없었으나 중심파장의 온도의존성은 0.0130 nm/$^{\circ}C$에서 0.0028 nm/$^{\circ}C$ 수준으로 감소하였다.
본 연구는 의과대학 대학원생들이 특정 학술정보 검색엔진을 사용하는 이용 동기와 이용자 만족도를 조사하고, 이용 동기 요인이 이용자 만족도에 미치는 영향에 대해 살펴보았다. 본 연구는 서울의 한 대규모 의과대학 대학원생을 대상으로 2018년 9월 10일부터 2018년 9월 21일까지 설문을 실시하였으며, 총 135부의 유효한 응답을 분석하였다. 분석 결과, 의과대학 대학원생들이 학술정보 검색엔진을 이용하는데 있어 펍메드(PubMed)의 신뢰성 정도와 상호작용성 정도가 구글 스칼라(Google Scholar)보다 높게 나타났으며, 편리성과 전문성이라는 두 가지 이용 동기 요인이 학술정보 검색엔진의 이용자 만족도에는 유의미한 영향을 미치는 것으로 나타났다. 특히 편리성은 이용자들이 학술정보 검색엔진을 선택하는데 있어서도 가장 큰 영향을 미치는 것으로 나타났다. 연구 결과는 웹 사이트를 통한 학술정보서비스에 대한 논의를 의학정보의 맥락에서 이용과 충족이론으로 설명했다는 점에서 학문적 의의가 있다. 한편, 구체적인 연구 결과는 의학 관련 학술정보 검색엔진의 서비스 개선을 위한 실질적인 함의를 제공한다.
일반적으로 표면반사율과 분광반사율을 N차원의 칼라 코드로부터 정확히 복원하기 위해서는 N개의 기저함수가 필요하다. 전형적인 렌더링 응용에서 벡터의 덧셈, 스칼라 곱셈 및 성분별 곱셈에 대한 벡터 연산이 이질동형이라고 가정하고 광원의 중첩, 광원-표면간 상호간섭 및 상호반사와 같은 물리적인 연산을 모델링하지만 벡터 연산이 물리적인 현상을 그대로 반영하는 것은 아니다. 그러나 만약 기저함수가 특성함수로써 제한된다면 표면반사율과 분광반사율의 사상 결과 및 벡터들은 렌더링에서 물리적인 연산인 이질이형을 유지하게 된다. 본 논문은 새로운 N차원의 특성함수를 제안하고 N차원의 기저함수로 근사화된 먼셀 칼라 칩에 대하여 제안한 알고리즘의 정확성을 평가할 것이다.
본 논문에서는 영상 입력 장치로 입력되는 영상 내의 수많은 정보 중에서 지각적으로 중요하다고 여겨지는 현저한(salient) 영역만을 탐지해내는 새로운 방법을 제안한다. 제안하는 방법은 인간이 가지고 있는 시각적 주의 기능에 기본 바탕을 두고 있으며, 영상을 구성하고 있는 정보의 특징에 기반을 두고 있다. 가장 먼저 인간의 시각적 주의 기능에 영향을 미친다고 알려져 있는 몇 가지 특징들이 입력되는 영상의 모든 영역에 걸쳐 추출되어 각각의 특징에 해당되는 특징지도들로 형성된다. 이렇게 형성된 각각의 특징지도들을 구성하고 있는 특징 값들은 이들 각각의 국부적인 경쟁력 특성에 의하여 영상의 각 영역에서의 중요도를 나타내는 값으로 변환되어 중요도지도를 형성하게 된다. 이러한 중요도지도들은 모두 통합되어 하나의 현저함지도를 생성하게 된다. 현저함지도는 영상 내 각 장소의 현저함 정도를 미리 계산된 특징들의 공간적 중요도 측정치에 따른 스칼라 값으로 표시함으로써 영상 내에서 가장 현저한 영역을 찾을 수 있도록 가이드 한다. 제안하는 방법에 의해 시스템을 구성하여 실험한 결과, 인간이 중요하다고 여겨지는 주요 영역을 만족스럽게 탐지해 냄을 알 수 있었다.
데이타 종속성을 제거하기 위해서 명령어의 결과값을 예상하는 여러 결과값 예측기의 장점을 이용하여 높은 성능을 얻을 수 있는 새로운 혼합형 예측 메커니즘을 제안한다. 제안된 혼합형 결과값 예측기는 예상 테이블을 모험적으로 갱신할 수 있기 때문에 부적절한(stale) 데이타로 인해 잘못 예상되는 명령어의 수를 효과적으로 감소시킨다. 또한 정적 분류 정보를 사용하여 명령의 반입시 적절한 예측기에 할당함으로써 예상 정확도를 더욱 향상시키며, 하드웨어 비용을 효율적으로 감소시키도록 하였다. 5개의 SPECint 95 벤치마크 프로그램에 대해 SimpleScalar/PISA 3.0 툴셋을 사용하여 실험하였다. 16-이슈 폭에서 모험적 갱신을 사용한 평균 예상 정확도는 73%의 실험 결과가 나왔으며, 정적 분류 정보를 사용하였을 경우 예상 정확도가 88%로 증가된 결과를 얻었다.
조건부 분기 명령어는 분기 벌칙을 야기함으로써 명령어 수준의 병렬도 향상에 제약을 가한다. 고성능 슈퍼스칼라 프로세서의 등장으로 인해, 정확한 분기 예측의 중요성은 더욱 높아지고, 이를 위해 동적 분기 예측의 일종인 2단계 적응적 분기 예측(2-level adaptive branch prediction) 방식이 개발되었다. 그러나 2단계 적응적 분기 예측이 상당히 높은 예측 정확도를 보여주고 있음에도 불구하고, 정확도에 따른 비용이 기하급수적으로 증가하는 등의 문제점을 가지고 있다. 본 논문에서는 2단계 적응적 분기 예측의 이러한 문제점을 개선하기 위하여 세트 연관 캐쉬를 이용한 캐쉬 상관 분기 예측기(cached correlated branch predictor)를 제안하고, 기존의 방식에 비해 예측의 정확도는 증가하고, 비용은 줄어든 것을 시뮬레이션을 통하여 확인한다. 세트 연관 예측기의 경우 전역과 지역 방식의 가장 좋은 예측 실패율은 각각 5.99%, 6.28%이며, 이는 종래의 2단계 적응적 분기 예측 방식에서의 가장 좋은 결과인 9.23%, 7.35%에 비해 각각 54%, 17% 향상된 결과이다.
임계면법을 적용하여 횡등방성 암석의 강도이방성을 해석하는 방법을 제안하였다. 암석의 파괴는 Hoek-Brown 파괴기준을 따르는 것으로 가정하였다. Hoek-Brown의 경험적 파괴기준식에 대응되는 Mohr 포착선식을 이용하고 강도상수인 m과 s를 방향에 따른 스칼라 함수로 정의하여 이방성 파괴함수를 구성하였다. 이방성 파괴함수를 최대고 하는 임계면의 방향을 찾기 위하여 직접 최적화기법의 하나인 공액구배법을 적용하였다. 횡등방성 안석에 대한 기존 이방성 강도모델이 대부분 삼축압축실험과 동일한 응력조건에서만 적용할 수 있는데 반하여 이 연구에서 제안된 방법은 일반적인 3차원 응력조건에도 쉽게 적용할 수 있다는 장점을 가지고 있다. 삼축압축실험의 모사를 통하여 얻어진 삼축압축강도와 파괴면의 경사에 분석을 통하여 제안된 방법의 적합성을 검토하였다.
본 논문에서는 유한버퍼의(finite-buffered) 동기화된(synchronous) 큐잉모델(queueing model)을 이용하여 명령어들간의 병렬성, 분기명령의 빈도수, 분기예측(branch prediction)의 정확도, 캐쉬미스 등의 파라미터들을 고려하여 프로세서의 명령어 실행율을 예측하며 캐쉬의 성능과 파이프라인 성능간의 관계를 분석할 수 있는 새로운 해석적 모델을 제안하였다. 해석적 모델은 모델의 타당성을 검증하기 위해서 시뮬레이션을 수행하여 얻은 결과와 비교하였다. 해석적 모델과 시뮬레이션을 비교한 결과 대부분 10% 오차 내에서 일치하였다. 본 연구를 통하여 얻은 해석적 모델을 사용하면 시뮬레이션에서는 드러나지 않는 성능제약의 원인에 대한 명확한 규명이 가능하기 때문에 성능향상을 위한 설계자료를 얻을 수 있으며, 시스템 성능 밸런스를 위한 캐쉬와 비순차이슈 파이프라인 성능간의 관계에 대한 정확한 분석이 가능하다.Abstract This research presents a novel analytic model to predict the instruction execution rate of superscalar processors using the queuing model with finite-buffer size and synchronous operation mode. The proposed model is also able to analyze the performance relationship between cache and pipeline. The proposed model takes into account various kinds of architectural parameters such as instruction-level parallelism, branch probability, the accuracy of branch prediction, cache miss, and etc.. To prove the correctness of the model, we performed extensive simulations and compared the results with the analytic model. Simulation results showed that the proposed model can estimate the average execution rate accurately within 10% error compared to simulation results. The proposed model can explain the causes of performance bottleneck which cannot be uncovered by the simulation method only. The model is also able to show the effect of the cache miss on the performance of out-of-order issue superscalar processors, which can provide an valuable information in designing a balanced system.
슈퍼스칼라 프로세서에서 값 예측(value prediction)은 한 명령의 결과를 미리 예측하여 명령들 간의 데이터 종속관계를 극복하고 실행함으로써 명령어 수준 병렬성(Instruction Level Parallesim, ILP)을 이용하는 기법이다. 값 예측기(value predictor)는 명령어 페치 시에 예측 테이블을 참조(lookup)하여 값을 예측하고, 명령의 실행 후 판명된 예측 결과에 따라 테이블을 갱신(update)하여 이 후의 참조를 대비한다. 그러나, 최근의 값 예측기는 프로세서의 명령 페치 및 이슈율이 커짐에 따라 예측 테이블이 갱신되기 전에 다시 같은 명령이 페치되어 갱신되지 못한 낡은 값(stale value)으로 예측되는 경우가 빈번히 발생하여 예측기의 성능이 저하되는 경향이 있다. 본 논문에서는 이러한 성능저하를 줄이기 위해 명령의 결과가 나올 때가지 기다리지 않고 테이블 값을 모험적으로 갱신(speculative update)하는 스트라이트 값 예측기(stride value predictor)를 제안한다. 제안된 방식의 타당성을 검증하기 위해 SimpleScalar 시뮬레이터 상에 제안된 예측기를 구현하여 SPECint95 벤치마크를 시뮬레이션하고 제안된 모험적 갱신의 스트라이드 예측기가 기존의 스트라이드 예측기 보다 성능이 향상됨을 보인다.
암호시스템에서 효율성은 매우 중요한 요소 중의 하나이다. 천정희 외 3인은 이산대수 문제에 기반하는 암호 시스템에서 지수승 연산 속도를 높이기 위해 새로운 지수 형태를 제안하였다. 제안된 변형은 고정된 원소 ${\alpha}$와 작은 해밍 웨이트를 가지는 두 원소 $e_1$, $e_2$에 대해 $e_1+{\alpha}e_2$로 표현되며 스플릿 지수라 불린다. 그들은 $e_1$, $e_2$를 각각 $Z_p$의 부분집합이면서 언밸런스드 부분집합인 $S_1$, $S_2$에서 선택하였다. 본 논문에서는 $S_1$, $S_2$를 $Z_p$의 부분집합이면서 밸런스드 부분집합이 되도록 하여 효율성을 개선한다. 결과적으로, 이진 유한체에서의 지수승 연산 속도는 9.1%, 코블리츠 곡선에서의 스칼라 곱셈 연산 속도는 12.1% 빨라진다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.