• Title/Summary/Keyword: 스카프 수리법

Search Result 2, Processing Time 0.016 seconds

Effect of Micro-bolt Reinforcement for Composite Scarf Joint (복합재 스카프 조인트에서의 마이크로 볼트 보강에 대한 타당성 연구)

  • Lee, Gwang-Eun;Sung, Jung-Won;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.32 no.1
    • /
    • pp.37-44
    • /
    • 2019
  • The reinforcement effect of micro-bolt for a bonded scarf joint was investigated. Three scarf ratios of 1/10, 1/20, and 1/30 were considered to examine the effect of scarf patch configuration on joint strength. To maintain the same density of micro-bolt, 16, 32, and 48 bolts were installed in the scarf joint specimens with scarf ratios of 1/10, 1/20, and 1/30, respectively. Tests were also carried out on the joints that are bonded with only adhesive and that are fastened with only micro-bolts to obtain reference values. The average failure loads of the adhesive joints with scarf ratios of 1/10, 1/20, and 1/30 were 29.7, 39.6, and 44.8 kN, respectively. In case of micro-bolt reinforcement, the failure loads at the same scarf ratios were 28.4, 37.2, and 40.1 kN, respectively, which corresponds to 96, 94, and 90% of the pure adhesive joint failure loads. In the case of using only micro-bolts, the failure loads were only 13-25% of the average failure loads of pure adhesive joints. Fatigue test was also conducted for the joints with scarf ratio of 1/10. The results show that the fatigue strength of hybrid joints using both adhesive and microbolts together slightly increased compared to the fatigue strength of adhesive joint, but the rate of increase was small to 2-3%. Through this study, it was confirmed that the reinforcement effect of micro-bolt is negligible in the scarf joints where shear stress is dominating the failure, unlike in the structure where peel stress is dominant.

Tensile Strength of Composite Laminate Repaired Using Heat-blanket and a Novel Pressurization System (히트블랑켓과 새롭게 개발된 가압장치를 이용해 수리한 복합재 적층판의 인장강도 연구)

  • Chae, Song-Su;Lee, Gwang-Eun;Ahn, Hyonsu;Choi, Jin-Ho;Kweon, Jin-Hwe
    • Composites Research
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • In the case of a conventional composite patch repair using a heat blanket, the adhesive is pressurized using only a vacuum bag. In this study, however, a pressurization system has been developed to apply additional air pressure on the vacuum bag. In order to verify the performance of the developed system, the composite laminates were repaired with scarf patches and then tested under tensile load to be compared with the strength of the defect-free laminate. Tensile tests were also conducted on specimens with the same configuration but bonded in an autoclave. As a result of the test, the tensile strengths of the specimens repaired using the heat blanket with vacuum only without external pressure, the specimens repaired with additional pressure by the developed system, and the specimens repaired with the same external pressure in an autoclave, showed the strength recovery ratios of 74.9, 81.0, and 78.2%, respectively. The results of the tensile test after moisture saturation and the dried fatigue test also showed that the strength recovery ratios of the specimens repaired under the external pressure of 1 atm using the developed system are slightly higher than that of specimens bonded in autoclave.