• Title/Summary/Keyword: 스카이훅제어

Search Result 53, Processing Time 0.022 seconds

Semi-Active Control of ER Suspension System Incorporating with Dynamic Characteristics of Damping Force (댐핑력 응답특성을 고려한 ER 현가장치의 반능동제어)

  • Han, Sang-Soo;Choi, Seung-Bok
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.452-457
    • /
    • 2000
  • This paper presents control response of a semi-active electro-rheological(ER) suspension. After showing dynamic characteristics of the ER damper, 1/4 car model is formulated by incorporating with the time constant of the damping force. $H_{\infty}$ controller compensating mass and time constant uncertainties is then designed in order to suppress vibration level of the suspension. The control responses such as vertical acceleration are presented.

  • PDF

Hybrid Control of Active Suspension System Considering Hydraulic System Dynamics (유압계의 동특성을 고려한 능동 현가계의 합성 제어)

  • 김효준;박혁성;양현석;박영필
    • Journal of KSNVE
    • /
    • v.7 no.2
    • /
    • pp.239-246
    • /
    • 1997
  • This paper presents an active suspension control algorithm to improve the suspension performance trade-offs between riding comfort and handling stability. In this paper, a hybrid control scheme is proposed, the idea of which is that sliding mode control is used for nonlinear hydraulic system and the skyhook control is applied to control the vehicle behavior. The parameter variations in hydraulic system are considered for the robust controller design. The performance of the proposed control method is evaluated by simulation and experiments based on a half car roll model which can reveal both heave and roll behavior.

  • PDF

Development of an Active Suspension System for Passenger Cars( II ) ; Prototype Car Test Result (승용차용 능동제어식 현가시스템의 개발(2); 실차 성능실험 및 결과)

  • Hwang, Y.;Hong, Y.S.;Lee, J.M.;Bae, J.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.83-94
    • /
    • 1994
  • Performance test result on prototype car equipped with low-band type active suspension system is reported. Control theory is explained first. Simulation for feasibility and parameter tuning, control module test using hydraulic exciter and test run, and performance evaluation of the test car on test track are reported successively. Emphasis was put on modification of control theory which caused many unexpected problems in actual implementation.

  • PDF

Development of an Active Suspension System for Passenger Cars( I ) : Construction of Prototype Car (승용차용 능동제어식 현가시스템의 개발(1) : 실험차량의 구성)

  • Hong, Y.S.;Hwang, Y.;Kim, D.Y.;Kim, Y.B.;Shim, J.J.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.73-82
    • /
    • 1994
  • Low-band type active suspension system is implemented on a passenger car. Level. roll, pitch and bouncing motion of body are controlled by a digital controller. Sky-hook damper is applied to control bouncing motion. This paper describes overall construction of the system, design of hydraulic system, sensor system, controller, and control scheme. Performance of prototype car has been evaluated on a test track and reported in the second paper.

  • PDF

Development of the Semi-Active Controlled Variable Damper System for Passenger Vehicles (승용차용 반능동형 가변댐퍼 시스템의 개발)

  • 허승진;심정수;황성호
    • Journal of KSNVE
    • /
    • v.8 no.4
    • /
    • pp.683-689
    • /
    • 1998
  • A control algorithm for multi-stage dampers is developed based on the mode skyhook control concept, and implemented on the full vehicle system environment. The test vehicle system is equipped with the real time controller, four-stage variable dampers and sensors. The real time controller is developed using a digital signal processor(DSP), digital I/O, A/D and D/A converters. The dampers are driven by the electromagnetic actuators of less than 20 msec response time. The sensors include accelerometers, relative displacement transducers, and steering wheel rate sensors, etc. Through a series of tests in laboratory and proving ground, the performance of the semi-active suspension system is evaluated and it is shown that the vehicle dynamic characteristics is improved with the developed damping system. Futhermore, the parameter tuning methods to enhance vehicle dynamic performance are propsoed.

  • PDF

Vibration Control of an Engine Mount Featuring MR Fluid (MR 유체를 이용한 엔진마운트의 진동제어)

  • 이현희;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.213-218
    • /
    • 2001
  • A magnetorheological(MR) engine mount for a passenger vehicle and its vibration control performance is experimentally evaluated. A mixed-mode model for the MR engine is derived by incorporating Herschel-Bulkely model of the MR fluid. After analyzing the field-dependent damping force, a appropriate size of the MR engine mount is manufactured. The field-dependent is displacement transmissibility of the engine mount is evaluated in the frequency domain at various excitation levels. In addition, time-dependant damping force is experimentally investigated by changing the excitation amplitude.

  • PDF

Vibration Control of a Vehicle using ER Damper (ER댐퍼를 이용한 차량의 진동제어)

  • Joo, Dong-Woo;Lee, Yuk-Hyung;Park, Myeong-Kwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.5 s.98
    • /
    • pp.104-111
    • /
    • 1999
  • A semi-active suspension system for a vehicle using an Electrorheological Fluid damper has been studied. Apparent viscosity of ERF(Electrorheological Fluid) can be changed rapidly by applying electric field. The damping force of ER damper can be selectively controlled by employing electric field to the ER fluid domain. This paper deals with a two-degree-of-freedom suspension using the ER damper for a quarter car model. An intelligent control method using fuzzy control with genetic algorithm has been employed to control the damping force of the ER damper. The GA designs the optimal structure and performance of Fuzzy Net Controller having hybrid structure. The designed fuzzy net controller has been compared with the skyhook type controller for a quarter car model. The computer simulation results show that the semi-active suspension with ER damper has a good performance in the sense of ride quality with less vibration for ground vehicle.

  • PDF

Maneuver Analysis of Full-Vehicle Featuring Electrorheological Suspension and Electrorheological Brake (ER 현가장치 및 ER 브레이크를 적용한 전체차량의 거동분석)

  • Sung, Kum-Gil;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1125-1130
    • /
    • 2007
  • This paper presents a maneuver analysis of a full-vehicle featuring electrorheological (ER) suspension and ER brake. In order to achieve this goal, an ER damper and an ER valve pressure modulator are devised to construct ER suspension and ER brake systems, respectively. After formulating the governing equations of the ER damper and ER valve pressure modulator, they are designed and manufactured for a middle-sized passenger vehicle, and their field-dependent characteristics are experimentally evaluated. The governing equation of motion for the full-vehicle is then established and integrated with the governing equations of the ER suspension and ER brake. Subsequently, a sky-hook controller for the ER suspension and a sliding mode controller for the ER brake are formulated and implemented. Control performances such as vertical displacement and braking distance of vehicle are evaluated under various driving conditions through computer simulations.

  • PDF

Control simulation of MR damper for a cruise bus including the virtual dynamic damper (가상 동흡진기를 고려한 우등버스용 MR댐퍼의 제어 시뮬레이션)

  • Park, S.J.;Sohn, J.H.
    • Journal of Power System Engineering
    • /
    • v.15 no.2
    • /
    • pp.19-24
    • /
    • 2011
  • In this study, a control method of MR(magneto-rheological) damper for a cruise bus is investigated. A virtual dynamic damper and a sky-hook algorithm are employed to control the damping characteristics of MR damper. Coefficients for a virtual dynamic damper are determined through the parameter identification. A quarter car model of a cruise bus is established by using ADAMS/Car program for the computer simulation. Sine wave excitation and random excitation are used to compare the controlled MR damper with the passive damper. From the simulation results, the performance of MR damper with a virtual dynamic damper is better than that of the passive damper.

Vibration Control Performance of a Passenger Vehicle Featuring ER Engine Mounts (ER 엔진마운트를 장착한 승용차량의 진동제어 성능)

  • Song, Hyun-Jeong;Choi, Seung-Bok;Jeon, Young-Sik
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.481-486
    • /
    • 2000
  • This paper presents vibration control performance of a passenger vehicle installed with olectro-rheological(ER) engine mounts. As a first step, a mixed-mode ER engine mount is modeled and manufactured. After verifying the controllability of the dynamic stiffness by the intensity of the electric field, ER engine mounts are incorporated with a full-car model. The governing equation of motion is then formulated by considering engine excitation force. A skyhook controller to attenuate vibration motions is designed. The controller is implemented through hardware-in-the-loop simulation and control responses are presented in the both frequency and time domains.

  • PDF