• Title/Summary/Keyword: 스월형 혼합기

Search Result 4, Processing Time 0.017 seconds

Effect of Vane Angle of Swirl Type Mixer on Flow Mixing and Pressure Drop in Marine Selective Catalytic Reduction Systems (선박용 SCR 시스템에서 스월형 혼합기의 날개 각도가 유동혼합 및 압력강하에 미치는 영향)

  • Park, Taewha;Sung, Yonmo;Kim, Taekyoung;Choi, Cheolyong;Kim, Duckjool;Choi, Gyungmin
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.443-448
    • /
    • 2015
  • A swirl type mixer was developed to improve the flow mixing performance of a marine selective catalytic reduction system. In this study, the swirl type mixer and a multi-staged swirl type mixer, in which the angle of the vanes at each stage is controllable were considered to provide the optimal region of angles for the mixers. The effects of the vane angles in both mixers on the uniformity index and pressure drop were investigated using a computational fluid dynamics simulation. In the swirl type mixer, the optimal conditions for the flow mixing performance were observed at vane angles from 30 to 60 degrees when vane angles could be adjusted between 10 to 80 degrees, however, the pressure drop increased continually with increasing vane angle of the mixer. On the other hand, control of the individual staged angles of the multi-staged mixer showed that it is possible to keep enhancing flow mixing performance while reducing the pressure drop.

Effect of Mixer Structure on Turbulence and Mixing with Urea-water Solution in Marine SCR System (선박용 SCR 시스템에서 혼합기 구조에 따른 난류유동과 우레아 수용액의 혼합특성)

  • Kim, Tae-Kyoung;Sung, Yon-Mo;Han, Seung-Han;Ha, Sang-Jun;Choi, Gyung-Min;Kim, Duck-Jool
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.814-822
    • /
    • 2012
  • To improve the flow and mixing characteristics of marine SCR system, two different mixer including up-down and swirl type mixer were considered. The purpose of this study is to analyse turbulence intensity and uniformity index in detail and to improve the performance of SCR with respect to the mixer structure. The results showed that, the concentration uniformity index is improved by about 5% with the utilization of both mixers in the front of catalyst part. Although the RMS value and relative turbulence intensity increased after the up-down type mixer, it could observed that the value of two parameters decreased with the flow proceeding forward to the downstream. For the case of swirl type mixer, the decrease of RMS value and relative turbulence intensity were relatively smaller than that of up-down type mixer, and uniform distribution of relative turbulence intensity was observed. As a results, it could be concluded that the mixing effects and the distance of the two kinds of mixer were different.

A Study on Spray Angle of Dual Swirl Injector with Different Recess Length (Dual Swirl Injector Recess 길이에 따른 분산각 평가)

  • Park, Hee-Ho;Kim, Tae-Han;Kim, Yoo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.3
    • /
    • pp.30-37
    • /
    • 2003
  • Spray angle of dual swirl injector is established according to the velocity ratio at orifice exit. Due to the internal mixing at recess and lack of correlation for the combined two fluid injection, prediction of spray angle is very difficult. This study deal with experimental work and numerical simulation on spray angle with different recess length. Among the multiphase flow models, the VOF model was selected to simulate the spray angle. Feasibility of numerical analysis are confirmed by comparing the results with the experimental data, and the effect of recess on spray angle are analyzed for single and combined spray case.

Study on Combustion Characteristics of Unielement Thrust Chambers with Various Injectors (다종의 동축 스월형 단일 분사기 연소 특성에 관한 실험적 연구)

  • Seonghyeon Seo;Lee, Kwang-Jin;Han, Yeoung-Min;Kim, Seung-Han;Kim, Jong-Gyu;Moon, Il-Yoon;Seol, Woo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.85-94
    • /
    • 2004
  • Experimental study on combustion characteristics of double swirl coaxial injectors has been conducted for the assessment of critical injector design parameters. A reusable, unielement thrust chamber has been fabricated with a water-cooled copper nozzle. Two principal design parameters. a swirl angle and a recess length, have been investigated through hot firing tests for the understanding of their effects on high pressure combustion. Clearly, both parameters considerably affect the combustion efficiency, dynamics and hydraulic characteristics of an injector. Internal mixing of propellants in a recess region increases combustion efficiency along with the increase of a pressure drop required for flowing the same amount of mass flow rates. It is concluded that pressure buildup due to flame can be released by the increase of LOx flow axial momentum or the reduction of a recess length. Dynamic pressure measurements of the thrust chamber show varied dynamic behaviors depending on injector configurations.