• Title/Summary/Keyword: 스무스 강섬유

Search Result 3, Processing Time 0.023 seconds

An Experimental Study on the Measurement of Electrical Conductivity of Cementitious Composites According to the Type of Steel Fiber (강섬유 종류에 따른 시멘트 복합체의 전기전도도 측정에 대한 실험적 연구)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Nam, Jeong-Soo;Lee, Sang-Kyu;Shu, Dong-Kyun;Eu, Ha-Min
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.191-192
    • /
    • 2020
  • The purpose of this study is to measure the electrical conductivity of cementitious composites as an early step to obtain shielding performance by mixing various type of steel fiber into cementitious composites, the main building material of protection facility, to shield electromagnetic pulse (EMP) damage. Fiber such as conductors as amorphous metallic fiber, hooked steel fiber, and smooth steel fiber are mixed into cementitious composites to give electrical conductivity and measure the impedance of concrete using LCR meter. By doing this, the electrical conductivity of each type of steel fiber reinforced cementitious composites (FRCC) is compared.

  • PDF

Correlation between Electrical Conductivity and Shielding Effectiveness of Cementitous Composites according to length and volume fraction of steel fiber (강섬유의 길이 및 혼입률에 따른 시멘트 복합체의 전기전도도와 차폐효과의 상관관계)

  • Lee, Yae-Chan;Kim, Gyu-Yong;Eu, Ha-Min;Choi, Byung-Cheol;Sasui, Sasui;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.213-214
    • /
    • 2022
  • The purpose of this study is to compare and analyze the effect of the length and volume fraction of smooth steel fiber on the electrical conductivity and shielding effectiveness of cementitious composites. As the length and volume fraction of the fiber increase, the movement of electrons becomes active and the formation of a conductive path becomes advantageous, thereby increasing electrical conductivity. Accordingly, the electrical conductivity and the shielding effectiveness showed a very close relationship. Thereafter, it is judged that research is needed to increase the shielding effect.

  • PDF

Tensile Properties of Hybrid Fiber Reinforced Cement Composite according to the Hooked & Smooth Steel Fiber Blending Ratio and Strain Rate (후크형 및 스무스형 강섬유의 혼합 비율과 변형속도에 따른 하이브리드 섬유보강 시멘트복합체의 인장특성)

  • Son, Min-Jae;Kim, Gyu-Yong;Lee, Sang-Kyu;Kim, Hong-Seop;Nam, Jeong-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.3
    • /
    • pp.31-39
    • /
    • 2021
  • In this study, the fiber blending ratio and strain rate effect on the tensile properties synergy effect of hybrid fiber reinforced cement composite was evaluated. Hooked steel fiber(HSF) and smooth steel fiber(SSF) were used for reinforcing fiber. The fiber blending ratio of HSF+SSF were 1.5+0.5, 1.0+1.0 and 0.5+1.5vol.%. As a results, in the cement composite(HSF2.0) reinforced with HSF, as the strain rate increases, the tensile stress sharply decreased after the peak stress because of the decrease in the number of straightened pull-out fibers by increase of micro cracks in the matrix around HSF. When 0.5 vol.% of SSF was mixed, the micro cracks was effectively controlled at the static rate, but it was not effective in controlling micro cracks and improving the pull-out resistance of HSF at the high rate. On the other hand, the specimen(HSF1.0SSF1.0) in which 1.0vol.% HSF and 1.0vol.% SSF were mixed, each fibers controls against micro and macro cracks, and SSF improves the pull-out resistance of HSF effectively. Thus, the fiber blending effect of the strain capacity and energy absorption capacity was significantly increased at the high rate, and it showed the highest dynamic increase factor of the tensile strength, strain capacity and peak toughness. On the other hand, the incorporation of 1.5 vol.% SSF increases the number of fibers in the matrix and improves the pull-out resistance of HSF, resulting in the highest fiber blending effect of tensile strength and softening toughness. But as a low volume fraction of HSF which controlling macro crack, it was not effective for synergy of strain capacity and peak toughness.