• Title/Summary/Keyword: 스마트-시티

Search Result 646, Processing Time 0.018 seconds

Analysis of Traffic Safety Effectiveness of Vehicle Seat-belt Wearing Detection System (주행차량 안전벨트 착용 검지시스템 교통안전 효과 분석)

  • Ji won Park;Su bin Park;Sang cheol Kang;Cheol Oh
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.53-73
    • /
    • 2023
  • Although it is mandatory to wear a seat belt that can minimize human injury when traffic accident occurs, the number of traffic accident casualties not wearing seat belts still accounts for a significant proportion.The seat belt wearing detection system for all seats is a system that identifies whether all seat passengers wear a seat belt and encourages their usage, also it can be a useful technical countermeasure. Firstly, this study established the viability of system implementation by assessing the factors influencing the severity of injuries in traffic accidents through the development of an ordered probit model. Analysis results showed that the use of seat belts has statistically significant effects on the severity of traffic accidents, reducing the probability of death or serious injury by 0.054 times in the event of a traffic accident. Secondly, a meta-analysis was conducted based on prior research related to seat belts and injuries in traffic accidents to estimate the expected reduction in accident severity upon the implementation of the system.The analysis of the effect of accident severity reduction revealed that wearing seat belts would lead to a 63.3% decrease in fatal accidents, with the front seats showing a reduction of 75.7% and the rear seats showing a reduction of 58.1% in fatal accidents. Lastly, Using the results of the meta-analysis and traffic accident statistics, the expected decrease in the number of traffic accident casualties with the implementation of the system was derived to analyze the traffic safety effects of the proposed detection system. The analysis demonstrated that with an increase in the adoption rate of the system, the number of casualties in accidents where seat belts were not worn decreased. Specifically, at a system adoption rate of 60%, it is anticipated that the number of fatalities would decrease by more than three times compared to the current scenario. Based on the analysis results, operational strategies for the system were proposed to increase seat belt usage rates and reduce accident severity.

Waterbody Detection for the Reservoirs in South Korea Using Swin Transformer and Sentinel-1 Images (Swin Transformer와 Sentinel-1 영상을 이용한 우리나라 저수지의 수체 탐지)

  • Soyeon Choi;Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Yungyo Im;Youngmin Seo;Wanyub Kim;Minha Choi;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.949-965
    • /
    • 2023
  • In this study, we propose a method to monitor the surface area of agricultural reservoirs in South Korea using Sentinel-1 synthetic aperture radar images and the deep learning model, Swin Transformer. Utilizing the Google Earth Engine platform, datasets from 2017 to 2021 were constructed for seven agricultural reservoirs, categorized into 700 K-ton, 900 K-ton, and 1.5 M-ton capacities. For four of the reservoirs, a total of 1,283 images were used for model training through shuffling and 5-fold cross-validation techniques. Upon evaluation, the Swin Transformer Large model, configured with a window size of 12, demonstrated superior semantic segmentation performance, showing an average accuracy of 99.54% and a mean intersection over union (mIoU) of 95.15% for all folds. When the best-performing model was applied to the datasets of the remaining three reservoirsfor validation, it achieved an accuracy of over 99% and mIoU of over 94% for all reservoirs. These results indicate that the Swin Transformer model can effectively monitor the surface area of agricultural reservoirs in South Korea.

A comprehensive analysis of temporal characteristics in independent rainstorm events in Seoul: focusing on changes in unit time and secondary peak constant (서울특별시 내 독립 호우사상의 시간분포 특성 분석: 분 단위와 차첨두 상수의 조건 변화를 중심으로)

  • Cha, Hoyoung;Lee, Jinwook;Jun, Changhyun;Byun, Jongyun;Baik, Jongjin
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.11
    • /
    • pp.785-799
    • /
    • 2023
  • In this study, we proposed a new concept termed the Secondary Peak Constant (SPC) and discerned the temporal characteristics of independent rainstorm events based on unit time and SPC about 24 observation stations in Seoul. Utilizing rainfall observations from 2000 to 2022, independent rainstorm events discreted from rainfall data per unit time. The temporal characteristics of these events were derived according to unit time, and temporal characteristics of the peak rainfall were identified through the SPC. Finally, the temporal characteristics of independent rainstorm events were examined distinctively when analyzed by unit time and SPC. Independent rainstorm events with smaller unit time showed significantly larger total rainfall, rainfall duration, and rainfall intensity. The temporal characteristics of the largest peak rainfall (1st Peak) within independent rainstorm events followed a sequence of Q4>Q2>Q3>Q1. Additionally, the 2nd Peak rainfall predominantly occurred the location where the 1st Peak appeared. The proportion of independent rainstorm events with multiple peak rainfalls exceeded 50.0% when the SPC was 0.7 or lower. The average number of peak rainfalls within independent rainstorm events ranged from 1.5 to 3.4. This study identified the temporal characteristics of independent rainstorm events based on unit time. Then, the peak rainfall of temporal characteristics was quantified by SPC on this study. Hence, it is evident that the temporal characteristics of independent rainstorm events for specific area can be anlayzed and quantified based on unit time and SPC.

Analysis of domestic water usage patterns in Chungcheong using historical data of domestic water usage and climate variables (생활용수 실적자료와 기후 변수를 활용한 충청권역 생활용수 이용량 패턴 분석)

  • Kim, Min Ji;Park, Sung Min;Lee, Kyungju;So, Byung-Jin;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.1
    • /
    • pp.1-8
    • /
    • 2024
  • Persistent droughts due to climate change will intensify water shortage problems in Korea. According to the 1st National Water Management Plan, the shortage of domestic and industrial waters is projected to be 0.07 billion m3/year under a 50-year drought event. A long-term prediction of water demand is essential for effectively responding to water shortage problems. Unlike industrial water, which has a relatively constant monthly usage, domestic water is analyzed on monthly basis due to apparent monthly usage patterns. We analyzed monthly water usage patterns using water usage data from 2017 to 2021 in Chungcheong, South Korea. The monthly water usage rate was calculated by dividing monthly water usage by annual water usage. We also calculated the water distribution rate considering correlations between water usage rate and climate variables. The division method that divided the monthly water usage rate by monthly average temperature resulted in the smallest absolute error. Using the division method with average temperature, we calculated the water distribution rates for the Chungcheong region. Then we predicted future water usage rates in the Chungcheong region by multiplying the average temperature of the SSP5-8.5 scenario and the water distribution rate. As a result, the average of the maximum water usage rate increased from 1.16 to 1.29 and the average of the minimum water usage rate decreased from 0.86 to 0.84, and the first quartile decreased from 0.95 to 0.93 and the third quartile increased from 1.04 to 1.06. Therefore, it is expected that the variability in monthly water usage rates will increase in the future.

The effect of climate change on hydroelectric power generation of multipurpose dams according to SSP scenarios (SSP 시나리오에 따른 기후변화가 다목적댐 수력발전량에 미치는 영향 분석)

  • Wang, Sizhe;Kim, Jiyoung;Kim, Yongchan;Kim, Dongkyun;Kim, Tae-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.57 no.7
    • /
    • pp.481-491
    • /
    • 2024
  • Recent droughts make hydroelectric power generation (HPG) decreasing. Due to climate change in the future, the frequency and intensity of drought are expected to increase, which will increase uncertainty of HPG in multi-purpose dams. Therefore, it is necessary to estimate the amount of HPG according to climate change scenarios and analyze the effect of drought on the amount of HPG. This study analyzed the future HPG of the Soyanggang Dam and Chungju Dam according to the SSP2-4.5 and SSP5-8.5 scenarios. Regression equations for HPG were developed based on the observed data of power generation discharge and HPG in the past provided by My Water, and future HPGs were estimated according to the SSP scenarios. The effect of drought on the amount of HPG was investigated based on the drought severity calculated using the standardized precipitation index (SPI). In this study, the future SPIs were calculated using precipitation data based on four GCM models (CanESM5, ACCESS-ESM1-5, INM-CM4-8, IPSL-CM6A) provided through the environmental big data platform. Overall results show that climate change had significant effects on the amount of HPG. In the case of Soyanggang Dam, the amount of HPG decreased in the SSP2-4.5 and SSP5-8.5 scenarios. Under the SSP2-4.5 scenario the CanESM model showed a 65% reduction in 2031, and under the SSP5-8.5 scenario the ACCESS-ESM1-5 model showed a 54% reduction in 2029. In the case of Chungju Dam, under the SSP2-4.5 and SSP5-8.5 scenarios the average monthly HPG compared to the reference period showed a decreasing trend except for INM-CM4 model.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.