• Title/Summary/Keyword: 스마트 작동기

Search Result 54, Processing Time 0.024 seconds

The study of smart farm sensing device in Jeonbuk province (전북지역 스마트 온실의 센서 활용에 대한 연구)

  • Lee, Choong Ho;Kim, H.Y.;Jung, Y.J.;Yang, S.H.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.134-134
    • /
    • 2017
  • 전북지역의 130여개 스마트온실 중에서 주요한 10여개의 주요 온실에 대한 온습도, 이산화탄소, 광센서 및 기타 센서의 사용실태에 대한 조사를 수해하였다(2016년 9월~12월). 온실의 선정은 온실의 종류(비닐/유리)와 복합제어기 종류(국산/외산)를 중심으로 조사하였다. 국내외 업체의 장단점, 스마트기기의 활용과 문제점, 클라우드 기반의 3세대 한국형 스마트온실의 적용기반에 대한 조사를 수행하였다. 융복합 제어기와 센서는 자체의 신뢰성 이외에 운용상의 알고리즘 차이에서 오는 문제로 인해 농가에서 측정결과에 대한 신뢰성이 낮고, 측정이 부정확하고 일일측정 데이터에 대한 활용이 어렵고, 설정 값을 사용자가 직접 계산하고 값들을 입력해주어야 한다는 단점에 대한 의견이 대부분이다. 외국 제품은 데이터 측정값의 활용이 용이하고 복합 환경 상황에 알맞게 자동 계산 시스템이 체계적으로 작동하여 제어에 반영되며 국내 업체 설정 값의 범위보다 세밀하게 설정이 가능하다는 장점이 있으나 설치비용이 국내대비 3~4배 높고 고장 시 A/S가 느린 편이며 영어로 구성된 복잡한 시스템이기 때문에 100% 활용하기 어렵다는 단점이 있다. 스마트기기 활용은 복합 환경제어를 하는 농가이면 국내 업체와 외국 업체 모두 활용하고 있으며 주로 스마트 폰으로 사용되고 전용 어플이 아닌 PC원격 제어 소프트웨어인 팀뷰어(Teamviewer)를 이용하여 복합제어기 PC를 직접 조작하여 사용한다. 클라우드 활용으로는 복합환경제어기 회사에서 작물별 제어 방법과 데이터 정보를 제공하지 않는 점에 대한 농가의 불편함이 많은 편으로 작물별 농사방법이 많고 지역별 농사방법이 다르기 때문에 조사한 전북지역의 농가 10곳 모두 클라우드를 사용하지 않는 것으로 조사되었다. 다양한 온실 및 생육환경에 따른 표준화된 운영의 문제점을 개선하여 스마트팜에서 중요한 역할을 수행하는 복합센서의 표준시험방법과 절차를 개발하여 관련산업의 발전에 응용할 필요성이 있으며 단순한 하드웨어의 표준화 또는 개선방향보다는 농가의경험과 누적된 토양,작물 등의 재배 생육정보를 이용한 작물생육모델과 온실모델의 일치를 통해 센서-생육환경예측-검증방법의 포준화가 필요한 것으로 사료된다.

  • PDF

Micro-positioning of a Smart Structure using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.230-236
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT (lead (Pb) zirconia (Zr) Titanate (Ti)) based stack actuator incorporating with the PID (Proportional-Integral-Derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

  • PDF

Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model (향상된 스틱-슬립 마찰 모델을 이용한 스마트 구조물의 마이크로 위치제어)

  • Lee, Chul-Hee;Jang, Min-Gyu;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1134-1142
    • /
    • 2008
  • In this paper, a model-based stick-slip compensation for the micro-positioning is proposed using an enhanced stick-slip model based on statistical rough surface contact model. The smart structure is comprised with PZT(lead (Pb) zirconia(Zr) Titanate(Ti)) based stack actuator incorporating with the PID(proportional-integral-derivative) control algorithm, mechanical displacement amplifier and positioning devices. For the stick-slip compensation, the elastic-plastic static friction model is used considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of system for the positioning apparatus was derived from the dynamic behaviors of structural parts. PID feedback control algorithms with the developed stick-slip model as well as feedforward friction compensator are formulated for achieving the accurate positioning performance. Experimental results are provided to show the performances of friction control using the developed positioning apparatus.

Force Tracking Control of a Smart Flexible Gripper Featuring Piezoceramic Actuators (압전 세라믹 작동기로 구성된 스마트 유연 그리퍼의 힘 추적 제어)

  • Choi, Seung-Bok;Cheong, Chae-Cheon;Lee, Chul-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.1
    • /
    • pp.174-184
    • /
    • 1997
  • This paper presents a robust force tracking control of a smart flexible gripper featured by a piezoceramic actuator characterizing its durability and quick response time. A mathematical governing equation for the proposed gripper structure is derived by employing Hamilton's principle and a state space control model is subsequently obtained through model analysis. Uncertain system parameters such as frequency variation are included in the control model. A sliding mode control theory which has inherent robustness to the sys- tem uncertainties is adopted to design a force tracking controller for the piezoceramic actuator. Using out- put information from the tip force sensor, a full-order observer is constructed to estimate state variables of the system. Force tracking performances for desired trajectories represented by sinusoidal and step func- tions are evaluated by undertaking both simulation and experimental works. In addition, in order to illustrate practical feasibility of the proposed method, a two-fingered gripper is constructed and its performance is demonstrated by showing a capability of holding an object.

  • PDF

Development of Greenhouse Environment Monitoring & Control System Based on Web and Smart Phone (웹과 스마트폰 기반의 온실 환경 제어 시스템 개발)

  • Kim, D.E.;Lee, W.Y.;Kang, D.H.;Kang, I.C.;Hong, S.J.;Woo, Y.H.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.18 no.1
    • /
    • pp.101-112
    • /
    • 2016
  • Monitoring and control of the greenhouse environment play a decisive role in greenhouse crop production processes. The network system for greenhouse control was developed by using recent technologies of networking and wireless communications. In this paper, a remote monitoring and control system for greenhouse using a smartphone and a computer with internet has been developed. The system provides real-time remote greenhouse integrated management service which collects greenhouse environment information and controls greenhouse facilities based on sensors and equipments network. Graphical user interface for an integrated management system was designed with bases on the HMI and the experimental results showed that a sensor data and device status were collected by integrated management in real-time. Because the sensor data and device status can be displayed on a web page, transmitted using the server program to remote computer and mobile smartphone at the same time. The monitored-data can be downloaded, analyzed and saved from server program in real-time via mobile phone or internet at a remote place. Performance test results of the greenhouse control system has confirmed that all work successfully in accordance with the operating conditions. And data collections and display conditions, event actions, crops and equipments monitoring showed reliable results.

Position control fo a flexible gantry robot arm using smart actuators (스마트 작동기를 이용한 갠트리형 유연로봇팔의 위치제어)

  • 한상수;최승복
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1800-1803
    • /
    • 1997
  • This paper presents new feedback actuators to achieve an accurate position control of a flexible gnatry robot arm. the translational motion in the plane is generated by two d.c.motors and controlled by emplying elecor-rheological(ER) clutch acutators. The generated motion can be continuously controlled by controlling the intensity of lectric field imposed to the ER fluid domain which tunes the transmitted torque of the ER clutch. n the other hand, during control action of the translational motion a flexible arm attached to the moving mass produces undesirable oscillatins due to its inherent flexibility. The oscillations are actively suppressed by applying feedback voltages to piezoceramic acutators bonded on the surface of the flexible arm. The control electric fields to be applied to the ER clutch and the control voltage for the piezoceramic actuator are determined via the loop shaping esign procedures(LSDP) in the H.inf. control technique. Comsequently, an accuate positiion control at the end-point of the flexible am is achieved during planar motion.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.299-304
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded Macro-fiber Composite (MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

  • PDF

Modal Analysis and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 모달 해석 및 진동 제어)

  • Sohn, Jung-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.8
    • /
    • pp.832-840
    • /
    • 2008
  • Dynamic characteristics of smart hull structure are investigated and active vibration control performance is evaluated. Dynamic model of smart hull structure with surface bonded macro-fiber composite(MFC) actuators is established by analytical method. Equations of motion of the host hull structure are derived based on Donnell-Mushtari equilibrium equations for a thin cylindrical shell. A general model for the interaction between hull structure and MFC actuator is included in the dynamic model. Modal analysis is then conducted and mode shapes and corresponding natural frequencies are investigated. After constructing of the optimal control algorithm, active vibration control performance of the proposed system is evaluated. It has been shown that structural vibration can be reduced effectively with proper control input.

Dynamic Modeling and Vibration Control of Smart Hull Structure (스마트 Hull 구조물의 동적 모델링 및 능동 진동 제어)

  • Sohn, Jung-Woo;Kim, Heung-Soo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.650-655
    • /
    • 2006
  • Dynamic modeling and active vibration control of smart hull structure using Macro Fiber Composite (MFC) actuator is conducted. Finite element modeling is used to obtain equations of motion and boundary effects of smart hull structure. Modal analysis is carried out to investigate the dynamic characteristics of the smart hull structure, and compared to the results of experimental investigation. Negative velocity feedback control algorithm is employed to investigate active damping of hull structure. It is observed that non-resonant vibration of hull structure is suppressed effectively by the MFC actuators.

  • PDF

Experimental Study on Shape Control of Smart Composite Structure with SMA actuators (SMA 작동기를 이용한 스마트 복합재 구조의 형상 제어에 관한 실험적 연구)

  • Yang Seung-Man;Roh Jin-Ho;Han Jae-Hung;Lee In
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2004.04a
    • /
    • pp.127-130
    • /
    • 2004
  • In this paper, active shape control of composite structure actuated by shape memory alloy (SMA) wires is presented. Hybrid composite structure was established by attaching SMA actuators on the surfaces of graphite/epoxy composite beam using bolt-joint connectors. SMA actuators were activated by phase transformation, which induced by temperature rising over austenite finish temperatures. In this paper, electrical resistive heating was applied to the hybrid composite structures to activate the SMA actuators. For faster and more accurate shape or deflection control of the hybrid composite structure, PID feedback controller was designed from numerical simulations and experimentally applied to the SMA actuators.

  • PDF