• Title/Summary/Keyword: 스마트 웨어러블 기기

Search Result 107, Processing Time 0.023 seconds

A Study of the Perceived Attractiveness of Wearable Devices - Focused on the Smartwatch - (웨어러블 기기의 매력성 지각에 관한 연구 - 스마트워치를 중심으로 -)

  • Lim, Yangwhan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.12 no.1
    • /
    • pp.131-141
    • /
    • 2016
  • This study explores the conditions under which consumers adopt wearable devices. The study focuses on the attractiveness of the product that consumers can perceive. This study was implemented to find out what factors influenced the consumers to perceive the attractiveness and value of the product. The factors include the benefits and costs of the product. The consumers' wants for the product was included under personal factor. The synergy effect of related product was classified circumstantial factor. The outcomes derived from the postulating and verifying hypothesis are as follows. First, the attractiveness of the product that the consumers perceive has a positive effect on perceiving the attractiveness of the product. Second, the benefits of the product that the consumers feel have a positive effect on the value of the product in a meaningful way. Third, the consumers' perception of the wants for the product have a significant effect on perceiving the value and attractiveness of the product. Fourth, the consumers' perception of the synergy effect between the wearable device and the smartphone did not affect the value of the product in a significant way, but did have a significant effect on the attractiveness of the products.

Patient Experiences with Artificial Intelligence-Based Smartwatch for Diabetes Medication Monitoring Service (당뇨 환자용 인공지능 복약관리 스마트워치의 사용자 경험)

  • Lee, Mi Sun;Jeong, Suyong;Lee, Hwiwon
    • Journal of muscle and joint health
    • /
    • v.29 no.1
    • /
    • pp.50-59
    • /
    • 2022
  • Purpose: This qualitative study aimed to explore the experiences of patients with diabetes provided with medication monitoring using an artificial intelligence-based smartwatch. Methods: Giorgi's descriptive phenomenological methodology was applied to collect and analyze data from November 9 to December 23, 2021. The study samples were recruited by convenience sampling, and even patients with diabetes participated in in-depth interviews via video conference and telephone calls or face-to-face visits. Results: Ten sub-themes and four themes were finally revealed. The four themes were as follows: journey with unfamiliar devices, a less-than-acceptable smartwatch, insufficient functions and content for patients with diabetes to use, and efforts for regular medication behaviors and daily monitoring of patient's health conditions. Conclusion: To effectively manage diabetic conditions using digital healthcare technologies, nursing interventions were needed to identify personal needs and consider technological, psychological, aesthetic, and socioeconomic aspects of wearable devices.

Development of Voice Activity Detection Algorithm for Elderly Voice based on the Higher Order Differential Energy Operator (고차 미분에너지 기반 노인 음성에서의 음성 구간 검출 알고리즘 연구)

  • Lee, JiYeoun
    • Journal of Digital Convergence
    • /
    • v.14 no.11
    • /
    • pp.249-255
    • /
    • 2016
  • Since the elderly voices include a lot of noise caused by physiological changes in respiration, phonation, and resonance, the performance of the convergence health-care equipments such as speech recognition, synthesis, analysis program done by elderly voice is deteriorated. Therefore it is necessary to develop researches to operate health-care instruments with elderly voices. In this study, a voice activity detection using a symmetric higher-order differential energy function (SHODEO) was developed and was compared with auto-correlation function(ACF) and the average magnitude difference function(AMDF). It was confirmed to have a better performance than other methods in the voice interval detection. The voice activity detection will be applied to a voice interface for the elderly to improve the accessibility of the smart devices.

Design and Implementation of IoT Chatting Service Based on Indoor Location (실내 위치기반 사물인터넷 채팅 서비스 설계 및 구현)

  • Lee, Sunghee;Jeong, Seol Young;Kang, Soon Ju;Lee, Woo Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.920-929
    • /
    • 2014
  • Recently, embedded system which demand is explosively increasing in the fields of communication, traffic, medical and industry facilities, expands to cyber physical system (CPS) which monitors and controls the networked embedded systems. In addition, internet of things(IoT) technology using wearable devices such as Google Glass, Samsung Galaxy Gear and Sony Smart Watch are gaining attention. In this situation, Samsung Smart Home and LG Home Chat are released one after another. However, since these services can be available only between smart phones and home appliances, there is a disadvantage that information cannot be passed to other terminals without commercial global messaging server. In this paper, to solve above issues, we propose the structure of an indoor location network based on unit space, which prevents the information of the devices or each individual person from leaking to outside and can selectively communicate to all existent terminals in the network using IoT chatting. Also, it is possible to control general devices and prevent external leakage of private information.

Development of Authentication Service Model Based Context-Awareness for Accessing Patient's Medical Information (환자 의료정보 접근을 위한 상황인식 기반의 인증서비스 모델 개발)

  • Ham, Gyu-Sung;Joo, Su-Chong
    • Journal of Internet Computing and Services
    • /
    • v.22 no.1
    • /
    • pp.99-107
    • /
    • 2021
  • With the recent establishment of a ubiquitous-based medical and healthcare environment, the medical information system for obtaining situation information from various sensors is increasing. In the medical information system environment based on context-awareness, the patient situation can be determined as normal or emergency using situational information. In addition, medical staff can easily access patient information after simple user authentication using ID and Password through applications on smart devices. However, these services of authentication and patient information access are staff-oriented systems and do not fully consider the ubiquitous-based healthcare information system environment. In this paper, we present a authentication service model based context-awareness system for providing situational information-driven authentication services to users who access medical information, and implemented proposed system. The authentication service model based context-awareness system is a service that recognizes patient situations through sensors and the authentication and authorization of medical staff proceed differently according to patient situations. It was implemented using wearables, biometric data measurement modules, camera sensors, etc. to configure various situational information measurement environments. If the patient situation was emergency situation, the medical information server sent an emergency message to the smart device of the medical staff, and the medical staff that received the emergency message tried to authenticate using the application of the smart device to access the patient information. Once all authentication was completed, medical staff will be given access to high-level medical information and can even checked patient medical information that could not be seen under normal situation. The authentication service model based context-awareness system not only fully considered the ubiquitous medical information system environment, but also enhanced patient-centered systematic security and access transparency.

Is Heart Rate Measured by Smartwatch during Exercise Reliable? Analysis of Correlation and Agreement Between Heart Rates of Polar and Smartwatch (운동 중 스마트워치 심박수 믿을 만한가? 폴라와 스마트워치 심박수 간 상관과 일치도 분석)

  • Kim, Ji-Hye;Lee, Jung-Lyeon;Woo, Min-Jung
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.6
    • /
    • pp.331-339
    • /
    • 2020
  • The purpose of this study is to investigate the correlation and agreement between heart rates of Polar heart rate monitor and a smartwatch in order to confirm the accuracy of heart rate measured by the smartwatch. Heart rates of fifty college students were measured for a total of 12 minutes under four conditions: rest, walk, Zumba, and cycle. As a result of correlation and agreement analysis between heart rates of the two devices, correlation coefficient (r) was 0.995 at rest, 0.991 at walk, 0.923 at Zumba, 0.932 at cycle, and Bland-Altman ratio (BA ratio) was 0.02 at rest, 0.03 at walk, 0.06 at Zumba, 0.04 at cycle. Heart rate from smartwatch showed high correlation and agreement with heart rate from Polar in all conditions, representing that smartwatch can be considered an reliable apparatus to measure hear rate.

Bio-sensing Data Synchronization for Peer-to-Peer Smart Watch Systems (피어-투-피어 스마트워치 시스템을 위한 바이오 센싱 데이터 동기화)

  • LEE, Tae-Gyu
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.813-818
    • /
    • 2020
  • Recently, with the rapid increase in technology and users of smart devices, the smart watch market has grown, and its utility and usability are continuously expanding. The strengths of smartwatches are wearable portability, application immediacy, data diversity and real-time capability. Despite these strengths, smartwatches have limitations such as battery limitations, display and user interface size limitations, and memory limitations. In addition, there is a need to supplement developers and standard devices, operating system standard models, and killer application modules. In particular, monitoring and application of user's biometric information is becoming a major service for smart watches. The biometric information of such a smart watch generates a large amount of data in real time. In order to advance the biometric information service, stable peer-to-peer transmission of sensing data to a remote smartphone or local server storage must be performed. We propose a synchronization method to ensure wireless remote peer-to-peer transmission stability in a smart watch system. We design a wireless peer-to-peer transmission process based on this synchronization method, analyze asynchronous transmission process and proposed synchronous transmission process, and propose a transmission efficiency method according to an increase in transmission amount.

Effect of Progressive Squat Exercise on Lower Body Muscles Activity and Foot Pressure in Male College Students

  • Jin-Wook, Lee;Jin-Young, Jung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.2
    • /
    • pp.143-151
    • /
    • 2023
  • This study examined the changes in lower body muscle activity and foot pressure during progressive squat exercise in male college students. It was conducted to help efficient exercise guidance by identifying and recognizing muscle imbalance using EMG and smart shoes and providing immediate feedback. The subjects of the study were 20 students from D University. As a result of this study, as the squat load increased, the activity of all muscles except for the left semitendinosus muscle and the anterior tibialis muscle significantly increased among. Foot pressure, when the squat load was increased, the pressure of the forefoot(FF) increased significantly and the pressure of the rear foot(RF) decreased significantly. Therefore, providing immediate feedback using a wearable device will prevent muscle imbalance and provide effective exercise guidance.

Convolutional Autoencoder based Stress Detection using Soft Voting (소프트 보팅을 이용한 합성곱 오토인코더 기반 스트레스 탐지)

  • Eun Bin Choi;Soo Hyung Kim
    • Smart Media Journal
    • /
    • v.12 no.11
    • /
    • pp.1-9
    • /
    • 2023
  • Stress is a significant issue in modern society, often triggered by external or internal factors that are difficult to manage. When high stress persists over a long term, it can develop into a chronic condition, negatively impacting health and overall well-being. However, it is challenging for individuals experiencing chronic stress to recognize their condition, making early detection and management crucial. Using biosignals measured from wearable devices to detect stress could lead to more effective management. However, there are two main problems with using biosignals: first, manually extracting features from these signals can introduce bias, and second, the performance of classification models can vary greatly depending on the subject of the experiment. This paper proposes a model that reduces bias using convo utional autoencoders, which can represent the key features of data, and enhances generalizability by employing soft voting, a method of ensemble learning, to minimize performance variability. To verify the generalization performance of the model, we evaluate it using LOSO cross-validation method. The model proposed in this paper has demonstrated superior accuracy compared to previous studies using the WESAD dataset.

  • PDF

Development of Lifelog Collection Interface and Visualization System for User Location Information Analysis (사용자 위치 정보 분석을 위한 라이프로그 수집 인터페이스 및 시각화 시스템 개발)

  • Choi, Jinu;Lee, Sukhoon;Jeong, Dongwon
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.7
    • /
    • pp.1-11
    • /
    • 2019
  • With the development of smartphones and wearable devices, researches related to platforms that collect lifelogs from these devices and the visualization of the lifelog results have also been advanced. However, the existed researches were impossible to collect data from various devices because they depended on a specific device and platform when transmitting or receiving lifelog data. In addition, they do not provide visualized analysis results of specialized lifelogs in specific areas, such as the users' location information. To resolve the problems, this paper analyzes user location information from the lifelog collection platform and develops the interface and visualization tools for lifelog collection. To do this, we define and analyze the requirements of developing the proposed system. Then, based on the analyzed requirements, this paper develops a lifelog visualization tool using various graphs, maps and the RESTful API interface and shows its implemented results.