• Title/Summary/Keyword: 스마트 방석

Search Result 5, Processing Time 0.017 seconds

Sitting Posture Information Services through Smart Cushion (스마트 방석을 통한 앉은 자세 정보 서비스)

  • Lee, Mi-hee;Kim, Seonhong;Kim, Hayeong;Byeon, Eonyeong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2016.07a
    • /
    • pp.217-218
    • /
    • 2016
  • 본 논문에서는 매년 증가하고 있는 청소년 허리질환의 문제를 해결하고자 가성비가 높은 스마트 방석을 개발하였다. 스마트 방석은 일반 방석에 압력센서 4개를 장착하고 앉은 사람의 자세를 모니터링하여 스마트폰과 PC를 통해 실시간 또는 통계적으로 분석해 준다. 이는 사용자로 하여금 경각심을 갖도록 유도하며 좌, 우측별 불균형한 자세를 교정하도록 하는 효과를 얻을 수 있다.

  • PDF

Development of Smart Sitting Mat using Pressure Sensor for Posture Correction (압력센서를 이용한 자세 교정 유도 스마트 방석 개발)

  • Kim, Minchang;Seo, Taeyoung;Lee, Juhyeob;Heo, Ung;Yoo, Hongseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.291-292
    • /
    • 2019
  • 본 논문에서는 자세 교정에 도움을 줄 수 있는 압력센서 기반의 스마트 방석 개발 사례를 소개한다. 스마트 방석은 스마트폰과 블루투스로 연결되며 스마트폰 앱은 사용자의 자세 정보를 분석한 후 자세가 불안정한 징후가 판단되면 알림을 통해 바람직한 자세를 취할 수 있도록 안내한다. 본 시제품 개발에서는 압력센서의 값을 분석한 후 단순한 형태의 자세 추정 방식을 채택하였지만 향후 다양한 실험 및 딥러닝 응용을 통해 정확한 자세 추정을 위한 알고리즘을 개발할 계획이며 알림에 의한 수동적 자세 교정이 아닌 기구 설계, 모터 제어 등을 통해 능동적인 자세 교정을 지원하는 스마트 방석을 개발할 계획이다.

  • PDF

Implementation of Real-time Sedentary Posture Correction Cushion Using Capacitive Pressure Sensor Based on Conductive Textile

  • Kim, HoonKi;Park, HyungSoo;Oh, JiWon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.153-161
    • /
    • 2022
  • Physical activities are decreasing and sitting time is increasing due to the automation, smartization, and intelligence of necessary household items throughout daily life. Recent healthcare studies have reported that the likelihood of obesity, diabetes, cardiovascular disease, and early death increases in proportion to sitting time. In this paper, we develop a sitting posture correction cushion in real time using capacitive pressure sensor based on conductive textile. It develops a pressure sensor using conductive textile, a key component of the posture correction cushion, and develops a low power-based pressure measurement circuit. It provides a function to transmit sensor values measured in real time to smartphones using BLE short-range wireless communication on the posture correction cushion, and develops a mobile application to check the condition of the sitting posture through these sensor values. In the mobile app, you can visualize your sitting posture and check it in real time, and if you keep it in the wrong posture for a certain period of time, you can notify it through an alarm. In addition, it is possible to visualize the sitting time and posture accuracy in a graph. Through the correction cushion in this paper, we experiment with how effective it is to correct the user's posture by recognizing the user's sitting posture, and present differentiation and excellence compared to other product.

Implementation of Cushion Type Posture Discrimination System Using FSR Sensor Array (FSR 센서 어레이를 이용한 방석형 자세 판별시스템의 구현)

  • Kim, Mi-Seong;Seo, Ji-Yun;Noh, Yun-Hong;Jeong, Do-Un
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.20 no.2
    • /
    • pp.99-104
    • /
    • 2019
  • Recently, modern people are increasing the incidence of various musculoskeletal diseases due to wrong posture. Prevention is possible through proper posture habit, but it is not easy to recognize posture by oneself. Various studies have been conducted to monitor persistent posture in daily life, but most studies using constrained measurement methods and high-cost measurement equipment are not suitable for daily life. In this paper, we implemented a posture discrimination system using a FSR sensor array that can induce posture correction spontaneously through sitting posture monitoring in daily life. The implemented system is designed as a cushion type so it is easy to apply to existing chair. In addition, it can identify five most common postures in everyday life, and can monitor real-time through Android-based smart-phone monitoring application. For the performance evaluation of the implemented system, each posture was measured 50 times repeatedly. As a result, 97.6% accuracy was confirmed.

A Study on the Efficient Human-Robot Interaction Style for a Map Building Process of a Home-service Robot (홈서비스로봇의 맵빌딩을 위한 효율적인 휴먼-로봇 상호작용방식에 대한 연구)

  • Lee, Woo-Hun;Kim, Yeon-Ji;Kim, Hyun-Jin;Yang, Gyun-Hye;Park, Yong-Kuk;Bang, Seok-Won
    • Archives of design research
    • /
    • v.18 no.2 s.60
    • /
    • pp.155-164
    • /
    • 2005
  • Home-service robots need to have sufficient spatial information about the surroundings for interacting with human intelligently and performing services efficiently. It is very important to investigate the efficient interaction style that supports map building task through human-robot collaboration. We first analyzed map building task with a cleaning robot and drew 4 design factors and tentative solutions, including map building procedure (task-preferred procedure/space- preferred procedure), LCD display installation (robot/robot+remote control), navigation method (push type/pull type), feedback modality(GUI/GUI+TTS). The design factors and tentative solutions were defined as independent variables and levels. This research investigated how those variables affect to the human task performance and behavior in map building tast. 8 kinds of experiment prototypes were built and usability test among 16 house wives was conducted for acquiring empirical data. As the experiment result, in terms of map building procedure, space-preferred procedure indicated better task performance than task-proffered procedure as we expected. For the LCD display installation factor, remote control with LCD display indicated higher task performance and subjective satisfaction. In robot navigation method, it was very difficult to find a significant difference between push type and pull type which contrary to our expectation. In fact, push type indicated higher subjective satisfaction. Also in feedback modality, we have acquired negative feedback an additional TTS operation guidance. It seems that robot's autonomy before achieving spatial information is rudiment condition which means users are just interacting with a mobile appliance. Thus they prefer remote-control-based interaction style in robot map building process as they used in traditional appliance control.

  • PDF