• Title/Summary/Keyword: 스마트톨링시스템

Search Result 4, Processing Time 0.018 seconds

GHG Reduction Effect through Smart Tolling: Lotte Data Communication Company (스마트톨링을 통한 온실가스 저감효과: 롯데정보통신 사례를 중심으로)

  • Roh, Tae-Woo
    • Journal of Digital Convergence
    • /
    • v.16 no.4
    • /
    • pp.87-94
    • /
    • 2018
  • Intelligent transportation systems are one of the most important new forms of infrastructure on domestic roads, and is a system that makes possible the most efficient movement of vehicles on a road. The High Pass system, which is a domestic intelligent transportation system, started a little later than in other countries but developed at a rapid pace. With the recent introduction of smart tolling technology, it provided an opportunity to stop and review the tolling system. This study aims to investigate the driving method and results of LDCC for domestic smart towing through case study. Unlike other companies, Lotte Data Communication Company has long invested in payment systems. It has little experience investing in infrastructure, but participated in the Smart Toll System at the Gwangan Bridge in cooperation with the Busan City government, to lead the development of intelligent transportation systems. LDCC, which has made new investments, not only exceeded its existing core competencies, but also upgraded Korea's tolling system's ability to reduce greenhouse gas emissions and improved its financial performance.

A Simple Methodology for Estimating the Capacity of Multi-lane Smart Tolling (다차로 톨링시스템(SMART Tolling)의 용량추정 방법에 대한 연구)

  • Choi, Keechoo;Lee, Jungwoo;Park, Sangwook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4D
    • /
    • pp.305-311
    • /
    • 2012
  • With the rapid deployment of hipass$^{(R)}$, the congestion is inevitable due to the operation of the hipass lane system. Recently, SMART Highway project have developed a multi-lane mainline tolling system, called SMART Tolling system. To analyze the effectiveness of the system in terms of capacity, this study tries to estimate the capacity and its improvement of multi-lane tolling system based on current hipass$^{(R)}$ data. The methodology uses the saturation time headway. This follows three steps; 1) estimate the saturation time headway, using hipass$^{(R)}$ data, and capacity. 2) estimate two factors (the first one is dividing the one side lane width and lateral clearance factor ($f_w$) into two side one, the second one is dividing the capacity of hipass lane operating a circuit breaker into the capacity of hipass lane not operating, the last one is increasing factor of lane width). 3) calculate the capacity of multi-lane mainline tolling system. The results of method produced 2172~2187 veh/hour as smart tolling capacities, respectively. Those are higher about 370 veh/hour than the values from existing literature reviews. Additionally, saturation time headways were identified as lower by 0.5 seconds/veh than existing headways based on hi-pass$^{(R)}$ based one, which naturally implies the improvement in capacity. Some limitations and future research agenda have also been discussed.

Communication System development based on Free Flow, Multi Lane (무정차 다차로 기반의 통신시스템 개발)

  • Woo, Rye-Na;Lee, Ki-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.4
    • /
    • pp.30-37
    • /
    • 2014
  • The Electronic Toll Collection System based on Free-Flow Multi-Lane is needed to solve some yearly problems such as traffic congestion, safety accident, maintenance by hold-up of one way hi-pass system. The hi-pass communication system is first-in, first-out method in one way environment so, it can't handle various running patterns such as vehicle platoon, switching lane and passing in multi-lane environment. In this thesis we compared and analyzed the communication system of foreign countries ETCS operating system and domestic hi-pass communication system, then studied communication system which can run in multiple-way accepting existing hi-pass OBU. And we formed the communication system of Free-Flow Multi-Lane environment as a plan using incoherent of IR antenna and coherent of RF antenna. The communication system in Free-Flow Multi-Lane environment can be used not alone in parking garages but in expressways of ETCS and toll roads from now on.