• 제목/요약/키워드: 슈퍼앙상블

검색결과 3건 처리시간 0.021초

ANN을 활용한 슈퍼앙상블 기법 개발 (Development of Super Ensemble Streamflow Prediction Method Using Artificial Neural Network)

  • 정일원;배덕효;김광천
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.889-893
    • /
    • 2005
  • 본 연구에서는 기후변화에 따른 신뢰성 높은 수자원 영향평가를 수행하기 위한 방안으로 유출모형에 따른 불확실성을 최소화할 수 있는 슈퍼앙상블 기법을 제안하였다. 유출모형들은 자연현상을 개념화하는 과정에서 목적에 따라 알고리즘이나 구조가 다르게 개발된다. 따라서 동일한 유역에 동일한 입력자료를 사용하더라도 유출모의 결과는 상이하며 이는 곧 불확실성으로 작용한다. 이러한 불확실성을 최소화하기 위한 방법으로 본 연구에서는 통계적기법인 인공신경망 모형을 이용하여 모형별 유출결과를 향상시킬 수 있는 슈퍼앙상블 기법을 개발하고 적용성을 분석하였다. 적용 대상유역으로는 한강수계에 위치한 괴산댐유역을 선정하였으며, 적용 모형으로는 일체형 모형인 Tank 모형과 준분포형 모형인 PRMS 모형을 이용하여 슈퍼앙상블을 구축하고 검정하였다.

  • PDF

광역규모 예측인자를 이용한 한반도 계절 강수량의 장기 예측 (Long-term Forecast of Seasonal Precipitation in Korea using the Large-scale Predictors)

  • 김화수;곽종흠;소선섭;서명석;박정규;김맹기
    • 한국지구과학회지
    • /
    • 제23권7호
    • /
    • pp.587-596
    • /
    • 2002
  • 경험적 직교함수(EOF)분석법과 다중회귀법에 기초하여 지연상관된 광역규모 예측인자로부터 3개월 이전에 계절 강수량을 예측할 수 있는 슈퍼앙상블 모델이 개발되었다. 이 모델의 예측성이 교차검증법에 의해 평가되었다. 관측값과 예측값사이의 상관계수는 봄철에 0.73, 여름철에 0.61, 가을철에 0.69, 겨울철에 0.75로 나타났다. 이러한 값은 유의수준 ${\alpha}$=0.00에서 유의한 값이다. 수퍼 앙상블 방법의 범주형 예측성이 3개 범주로 나누어진 사례에 대해서 평가되었다. 3개 범주는 계절 누적강수량의 상위 33.3%를 과우해, 하위 33.3%를 소우해, 그 나머지를 평년해로 구분하였다. 범주형 예측의 적중률은 계절에 따라 42%에서 74%로 나타났다.

GCM을 이용한 2016년 3-10월 짐바브웨 강수 및 가뭄전망 예측 (Prediction of Precipitation deficiency and Intensification of Drought Condition in Zimbabwe using GCM for Mar.-Oct.,2016)

  • 최경민;오재호
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.156-156
    • /
    • 2016
  • 2016년 2월 5일, 짐바브웨는 극심한 가뭄으로 인해 인구의 4분의 1이상이 식량난을 겪고 있다며 '국가 재난 사태'를 선포하였다. 한때 아프리카 곡창지대로 불리던 짐바브웨가 극심한 가뭄을 겪게 된 데에는 2015/16년 슈퍼엘니뇨의 영향이 크게 한 몫을 하였는데, 이는 남반구의 여름인 11월부터 이듬해 3월까지인 짐바브웨의 우기가 2015/16년 슈퍼엘니뇨 강도가 절정에 달했던 시기(10월에서 2월)와 겹쳐져 짐바브웨의 강수량이 슈퍼 엘니뇨의 영향을 받게 되었기 때문이다. 게다가 4월부터는 엘니뇨의 영향을 받은 우기가 끝나고 건기가 시작되기 때문에 앞으로 가뭄이 얼마나 더 악화될지 우려되는 상황이다. 짐바브웨의 기후를 살펴보면, 증발량이 강수량보다 많은 건조기후 중에서도 비교적 그 정도가 약한 기후인 반건조 지대에 속한다. 하지만 연강수량 변동에 따라서, 비가 내리는 해에는 토양 수분이 과잉되고 비가 적게 내리는 해에는 심한 물 부족 현상이 일어나게 되기 때문에, 건기가 시작되는 4월부터 짐바브웨 강수 예측은 가뭄이 얼마나 지속될지를 파악하는 데에 아주 중요한 요소가 될 수 있다. 따라서 본 연구에서는 강수 예측 결과를 중심으로 2016년 짐바브웨의 가뭄이 얼마나 지속되고, 또 가뭄의 강도는 어떻게 될지 알아보는 것에 목적을 두고, GCM을 이용하여 2016년 3월에서 10월까지 장기예측을 수행하였다. 경계 자료로는 ECMWF (European Centre for Medium Range Weather Forecasts)에서 제공하는 Sea Ice자료와, NOAA OI (National Oceanic and Atmospheric Administration Optimum Interpolation) Weekly SST자료를 사용하였고 엘니뇨의 영향을 고려하기 위해 IRI (International Research Institute)의 ENSO forecast를 참고하여 SST아노말리에 월별 가중치를 적용하였다. 초기 입력 자료로는 1월 21-30일 10일간의 ECMWF의 재분석 자료를 이용하여 총 10개 멤버의 앙상블 예측을 수행하였고, 8개월(3-10월) 기간에 대해 약 한 달간의 spin-up time을 주었다. 예측 자료를 모델 climatology와 비교하여 월 평균 강수 전망을 분석하였고, 기온과 해면기압의 월 평균자료도 추가 분석하였다. 또한 짐바브웨 지역의 강수 관측 자료와 모델 예측 자료를 이용하여 특정 도시들의 1년 누적강수를 예측 및 분석하였고, 최종적으로 이 결과를 통해 짐바브웨의 가뭄지속가능성을 살펴보았다.

  • PDF