• Title/Summary/Keyword: 순환 잔골재

Search Result 217, Processing Time 0.101 seconds

Study on the Shrinkage Properties of Concrete using Recycled Fine Aggregate (순환골재콘크리트의 수축특성에 관한 연구)

  • Na, Chul-Sung;Lee, Hyoung-Jun;Nam, Jeong-Soo;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.681-684
    • /
    • 2008
  • In case of recycled fine aggregate, density and absorption ratio is lower than natural one, so it is used to lower value added products and it is limited its usage. It is reported that Compressive and tensile strength of recycled concrete is more deteriorate and shrinkage properties is very deteriorate because high absorption of recycled fine aggregate. Accordingly, in this study, it is develop that dry manufacturing system composed specific gravity separator of high-speed rotation impact type, reclaimer of minuteness fine aggregate and evaluate that shrinkage properties of recycled concrete using recycled fine aggregate at producing this system. Hereafter, it is present that fundamental data to practical use recycled fine aggregate.

  • PDF

A Study on the Mechanism of Recycled Sand Dry Manufacturing System (순환잔골재 건식생산시스템의 메커니즘에 관한 연구)

  • Choi, Hyeong-Gil;Kim, Young-Bong;Na, Chul-Sung;Lee, Eui-Bae;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.481-484
    • /
    • 2008
  • Recently, the recycling and reusing of construction and demolition waste concrete is urgently required because waste concrete is greatly increased according to the rapid increasing of urban redevelopment project, but the problem solution for demand and supply unbalance of fine aggregate is urgently required because of the restriction of collecting sea fine aggregate. So the utilization of high quality recycled fine aggregate using construction and demolition waste concrete as new fine aggregate for construction industry is urgently. Accordingly, In this study, As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. And it is to examine mechanism of recycled sand dry manufacturing system.

  • PDF

The Bond Behavior between Deformed bars and Recycled Fine Aggregate Concrete according to Bar Position. (철근 위치에 따른 이형철근과 순환잔골재 콘크리트의 부착거동)

  • You, Young-Chan;Jang, Yong-Heon;Lee, Min-Jung;Yun, Hyun-Do;Choi, Ki-Sun;Lee, Do-Heun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1089-1092
    • /
    • 2008
  • The bond behavior between concrete and reinforcement is a important requirement for reinforced concrete constructions. For practical application, it is very important to study bond behavior of reinforcing bars in recycled fine aggregate concrete. Therefore, pull-out test in order to investigate the bond behavior between recycled fine aggregate concrete and deformed bars was performed. Recycled fine aggregate concrete replacement ratios (i.e., 0% and 100%) and positions of deformed bars (i.e., vertical and horizontal position) were considered as variables in this study. Test results were compared with the bond strength requirement recommended by CEB-FIP code. Based on the test results, It was found that the bond strength between the recycled fine aggregate concrete and deformed bars were influenced by both recycled fine aggregate concrete replacement ratios and positions of deformed bars. The reduction of bonded area at the soffit of horizontal reinforcement caused by concrete bleeding was observed in H type specimen. So, Only V type and HB specimen satisfied the bond strength requirement recommended by CEB-FIP code.

  • PDF

Study on the Development and Verification of Dry Manufacturing Technology for improving Quality of Recycled Fine Aggregate (순환잔골재 품질개선을 위한 건식생산기술의 개발 및 검증에 관한 연구)

  • Na, Chul-Sung;Choi, Hyeong-Gil;Kim, Young-Duck;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.469-472
    • /
    • 2008
  • As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. in this study. And it is to verify performance with evaluating quality of recycled fine aggregate. In consequence, it is identify that performance improvement effect of recycled fine aggregate by crushing recycled fine aggregate according to high-speed rotation impact, separating and collecting powder and minuteness dust according to centrifugal Force and mass defect, separating and reclaiming minuteness sand to mass defect.

  • PDF

An Experimental Study on Field Application of Self-Compacting Concrete Using Recycled Fine Aggregate (순환잔골재를 혼입한 자기충전 콘크리트의 현장적용을 위한 실험적 연구)

  • Ryou, Jae Suk;Song, Il Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.4
    • /
    • pp.193-203
    • /
    • 2011
  • The purpose of this study, looking to which the recycled fine aggregates from waste concrete have a lot of problems as a material for structure purpose, is applying the recycled fine aggregate to Self-Compacting Concrete(In the reminder of this paper, it often referred to as SCC) by using the characteristic which the powder containing the recycled fine aggregates can increase strength and liquidity. In this study, that is, the recycled fine aggregate powder is appropriate for developing high strength(over 40 MPa) and liquidity(JSCE 2 grade), the characteristic of the SCC and it was increased the ratio of mixing the recycled fine aggregates emerging from waste concrete and the normal fine aggregates by 25%, making differential in total 5 levels and applied to SCC. After all, this study was reviewed the physical properties of the fresh concrete, analyzed the mechanical properties and durability of the hardening concrete and tried to ensure the possibility of utilizing the recycled fine aggregates as a material for SCC. As a result, this study reached a conclusion that among the 5-level replacement ratios of the physical, mechanical analysis and the durability characteristics, the normal fine aggregates could be applied up to a replacement ratio of 50% more than the recycled fine aggregates and resulted in a deterioration in performance the replacement ratio larger than 50%. It is judged that the applicability of the real structures should be followed up in order to check the possibility of applying the recycled fine aggregates to real life.

Effect of Bar Position on the Bond Characteristics of Deformed Bars in Recycled Aggregate Concrete (철근위치에 따른 순환골재 콘크리트와 이형철근의 부착특성)

  • Jang, Yong-Heon;Kim, Sun-Woo;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.71-72
    • /
    • 2009
  • For practical application of recycled aggregate concrete, it is very important to study bond behavior of reinforcing bars in recycled aggregate concrete. Pull-out test was performed in order to investigate the bond behavior between recycled aggregate concrete and deformed bars.

  • PDF

An Experimental Study on the Properties of Engineering and Shrinkage Cracking Reduction of Fiber Reinforced Concrete Using Recycled Fine Aggregate (섬유보강 순환잔골재 콘크리트의 공학적 특성 및 수축균열저감특성에 관한 실험적 연구)

  • Kim, Gyu-Yong;Nam, Jeong-Soo;Kim, Moo-Han;Lee, Do-Heun;Song, Ha-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.3
    • /
    • pp.82-89
    • /
    • 2009
  • Recently, the study is progressing actively about manufacture skill of concrete for promoted recycled aggregate and concrete made into recycled aggregate in the construction production field. But, application and study about recycled fine aggregate insufficient compared to recycled coarse aggregate. So, in this study, it presents basic data for development of environmental load reduction fiber reinforcement recycled fine aggregate concrete by comparison and investigation about engineering properties and shrinkage cracking of fiber reinforcement recycled find aggregate concrete for increasing shrinkage cracking reduction and long term stability of environmental load reduction concrete used recycled fine aggregate. In the result of the study, compared to natural fine aggregate, a crack-extent increased by applying recycled fine aggregate, moreover, as a water cement ratio increased, the crack size increased, as well. In addition, it's shown that the specimen mixed with PVA and Nylon, among all kinds of fibers, showed the smallest crack size, so it's verified that the mix of fiber had an effect on decreasing crack-extent.

  • PDF

Uniaxial Behavior of Reinforced Concrete Column with Recycled Fine Aggregate (순환잔골재를 치환한 철근콘크리트 기둥의 압축거동 특성)

  • Jang, Gwang-Soo;Kim, Yun-Su;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.5-8
    • /
    • 2008
  • The use of recycled aggregates is increasing due to problems of lack of natural aggregates. But there are no appropriate design recommendations and basic data for structural members using recycled fine aggregate concrete. This paper is to evaluate compression behavior of reinforced concrete column with displacement level of recycled fine aggregate. For these purpose, four recycled fine aggregate replacement levels (0%, 30%, 60%, 100%) were considered in this paper. Four columns with 400mm${\times}$400mm in cross section are tested under axial load. Experimental results were compared using current code(KCI2007). Compressive strength of reinforced concrete columns with recycled fine aggregate showed higher than that provided in KCI 2007. The KCI provision were conservative and subsequently can be used for design of reinforced recycled fine aggregate concrete column.

  • PDF

An Experimental Study on the Estimation of Compressive Strength and the Physical Properties of Recycled Aggregate Concrete of Fixed Slump (슬럼프 고정 순환골재콘크리트의 물리적 특성 및 압축강도 추정에 관한 실험적 연구)

  • Kim, Sang-Heon;Jeon, Chan-Soo;Lee, Sea-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.51-58
    • /
    • 2018
  • This study was a basic research for actual production of recycled aggregate concrete, and experiments were carried out on the change of water cement ratio and physical properties of recycled aggregate concrete with fixed slump. Results were as follows. Concrete using recycled aggregate were required increased water to maintain the target slump, and the recycled fine aggregate are necessary more increased water more than the recycled coarse aggregate. The replacement ratio of recycled fine aggregate be less than 60%, would be possible to obtain the air content volume that did not deviate from the concrete quality specification. The compressive strength of concrete using recycled aggregate decreased with increasing the replacement of recycled aggregate, and compressive strength decreased by 25% when 100% recycled fine aggregate were replaced. As a result of analyzing the correlation of compressive strength according to the mixing factors of concrete, it was found that replacement of recycled fine aggregate> water cement ratio> air content volume were influenced in order.

Evaluation on the Applicability of Recycled Fine Aggregate to Precast Concrete Products (순환잔골재의 콘크리트 2차 제품 활용성 평가)

  • Kim, Sang-Chel;Park, Do-Kuk;Yoog, Keun-Chang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • While the amount of construction waste has not been changed much in discharge for last 10 years, the recycled resources refined from construction waste have been mainly applied to low-leveled one such as reclamation, back-fill, road base or subbase and so on. Thus this study addresses the applicability of recycled fine aggregate as a replaceable material in precast concrete. To evaluate the possibility, both of dry and wet processes were adopted as well as steam curing, widely used in the field for rapid producing. Most important experimental parameters were driven through preliminary experiments and were evaluated in terms of concrete properties. It is found from aggregate-replacement tests that all of consistency and strengths of concrete were decreased as the ratio of recycled fine aggregate increased, and the amount of decrease can be estimated using proposed equations. Though the recycled fine aggregate showed a decrease of concrete properties more or less, the applicability in large volume as a constituent of precast product was well noted from experimental results.