• Title/Summary/Keyword: 순환미분말

Search Result 169, Processing Time 0.024 seconds

Durability Characteristics in Concrete with Ternary Blended Concrete and Low Fineness GGBFS (삼성분계 콘크리트와 저분말도 슬래그를 혼입한 콘크리트의 내구 특성)

  • Kim, Tae-Hoon;Jang, Seung-Yup;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.287-294
    • /
    • 2019
  • GGBFS(Ground Granulated Blast Furnace Slag) has been widely used in concrete for its excellent resistance chloride and chemical attack, however cracks due to hydration heat and dry shrinkage are reported. In many International Standards, GGBFS with low fineness of 3,000 grade is classified for wide commercialization and crack control. In this paper, the mechanical and durability performance of concrete were investigated through two mix proportions; One (BS) has 50% of w/b(water to binder) ratio and 60% replacement ratio with low-fineness GGBFS, and the other (TS) has 50% of w/b and 60% replacement ratio with 4000 grade and FA (Fly Ash). The strength difference between TS and BS concrete was not great from 3 day to 91 day of age, and BS showed excellent performance for chloride diffusion and carbonation resistance. Two mixtures also indicate a high durability index (more than 90.0) for freezing-thawing since they contain sufficient air content. Through improvement of strength in low fineness GGBFS concrete at early age, mass concrete with low hydration heat and high durability can be manufactured.

Properties of Fresh State and Characteristics of Shrinkage in Concrete Containing Low Fineness GGBFS (저분말도 고로슬래그 미분말을 혼입한 콘크리트의 굳지 않은 상태의 특성 및 수축 특성)

  • Kim, Tae-Hoon;Yoon, Yong-Sik;Kwon, Seung-Jun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 2020
  • GGBFS(Ground Granulated Blast Furnace Slag) is one of the most actively used mineral admixtures with excellent long-aged strength and chloride diffusion resistance. Unlike Standard covering GGBFS in Japan and the U.K., the domestic standard for GGBFS does not contain low fineness of GGBFS under 4000 grade. In this paper, several basic tests are carried out for the concrete with 3,000 grade GGBFS concrete and ternary blended concrete for reducing hydration heat by mixing 4,000 grade GGBFS and fly ash, such as fresh concrete properties, compressive strength, and shrinkage properties. The air content and slump between the ternary blended concrete and the concrete with low-fineness GGBFS showed the similar level, and the results of difference in setting time from them were less than 20 minutes, showing no significant difference. In the evaluation of compressive strength and shrinkage characteristics, the ternary blended concrete showed lower long-aged strength and higher shrinkage than the low-fineness GGBFS concrete.

Study on the Development and Verification of Dry Manufacturing Technology for improving Quality of Recycled Fine Aggregate (순환잔골재 품질개선을 위한 건식생산기술의 개발 및 검증에 관한 연구)

  • Na, Chul-Sung;Choi, Hyeong-Gil;Kim, Young-Duck;Kwon, Soo-Kil;Kim, Gyu-Yong;Kim, Moo-Han
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.469-472
    • /
    • 2008
  • As recycled fine aggregate manufacturing technology with exceeding in economical efficiency, reduction efficiency of environmental load and quality improvement effect of recycled fine aggregate, it is to develop dry manufacturing system composed specific gravity separator of high-speed rotation impact type and centrifugal Force Powder Collector, etc. in this study. And it is to verify performance with evaluating quality of recycled fine aggregate. In consequence, it is identify that performance improvement effect of recycled fine aggregate by crushing recycled fine aggregate according to high-speed rotation impact, separating and collecting powder and minuteness dust according to centrifugal Force and mass defect, separating and reclaiming minuteness sand to mass defect.

  • PDF

An Experimental Study on the Rheology Characteristics of Insulating Concrete (단열콘크리트의 레올로지 특성에 관한 실험적 연구)

  • Ryu, Dong-Woo;Ji, Suk-Won;Jeon, Hyun-Kyu
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.118-124
    • /
    • 2016
  • The purpose of this study is to analyze the rheology characteristics of insulating concrete for each type of insulation performance improvement material and utilize the result as preliminary data for optimal flow designing and pumping analysis. As a result, when lightweight aggregate was mixed, the yield stress decreased significantly, and in case of type 2, the combination of micro form cell admixture (MFA) and calcined diatomite powder (DM) showed the most ideal flow characteristics. In case of type 3, the combination of micro form cell admixture (MFA), calcined diatomite powder (DM) and lightweight aggregate (L) showed the best flow characteristics.

Effect of Incineration Plant Ash on Fundamental Properties of High Volume Blast Furnace-Slag Mortar incorporating Recycled Aggregate Powder (소각장애시의 치환률 변화에 따른 순환골재 미분말 함유 고로슬래그 다량치환 모르타르의 기초적 특성)

  • Huang, Jin-Guang;Park, Jae-Yong;Jung, Sang-Woon;Heo, Young-Sun;Han, Min Cheol;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.126-127
    • /
    • 2013
  • For the decades, various of materials were used to instead of cement as the high volume CO2 occurred during the process of cement manufacture. In this paper, incineration plant ash was used in the mortar which incorporating high volume of blast furnace slag. Water to binder ratio(W/B) is fixed as 50%,BS+RP's replacement ratio is fixed as 80%,and the replacement ratio of WA1 is range as 0,0.5,1,2,3,4,5%.For the fresh mortar, flow and chloride contents has been tested. For the hardened mortar, compressive strength at 3,7,28 days has been tested. the result shows that when the replacement ratio of WA1 is 0.5%,the chloride contents is less than 0,3 kg/m3,the flowability and strength also performed better than other replacement types of mortar.

  • PDF

Properties of the Flowability and Strength of Cementless Alkali-Activated Mortar Using the Mixed Fly Ash and Ground Granulated Blast-Furnace Slag (플라이애쉬와 고로슬래그 미분말의 혼합 사용한 무시멘트 알칼리 활성 모르터의 유동성 및 강도 특성)

  • Koh, Kyung-Taek;Ryu, Gum-Sung;Lee, Jang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.114-121
    • /
    • 2010
  • Portland cement production is under critical review due to high amount of CO2 gas released to the atmosphere. Attempts to increase the utilization of a by-products such as fly ash and ground granulated blast-furnace slag to partially replace the cement in concrete are gathering momentum. But most of by-products is currently dumped in landfills, thus creating a threat to the environment. Many researches on alkali-activated concrete that does not need the presence of cement as a binder have been carried out recently. However, most study deal only with alkali-activated ground granulated blast furnace slag or fly ash, as for the combined use of the both, little information is reported. In this study, we investigated the influence of mixture ratio of fly ash/ blast furnace slag tand curing condition on the flowability and compressive strength of mortar in oder to develop cementless alkali-activated concrete. In view of the results, we found out that the mixture ratio of fly ash/blast furnace slag always results to be significant factors. But the influence of curing temperature in the strength development of mortar is lower than the contribution due to other factors. At the age of 28days, the mixture 50% fly ash and 50% ground granulated blast furnace slag activated with 1:1 the mass ratio of 9M NaOH and sodium silicate, develop compressive strength of about 65 MPa under $20^{\circ}C$ curing.

  • PDF

Quality of High Volume Blast Furnace Slag Mortar Depending on Desulfurization Gypsum Treating Methods and Fine Aggregate Type (탈황석고의 가공법 및 잔골재종류 변화에 따른 고로슬래그 미분말 다량 치환 모르타르의 품질 특성)

  • Han, Cheon-Goo;Lee, Dong-Yun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.4 no.2
    • /
    • pp.157-164
    • /
    • 2016
  • In this research, based on the condition of using desulfurization gypsum(FGD) as a stimulator for high-volume blast furnace slag cement mortar, sieving and heating process methods of removing activated carbon in FGD were compared with the non-processed FGD and recycled and natural fine aggregates were compared for suitable aggregate to be used. According to the result of experiment, sieving with 0.3mm was more efficient than $500^{\circ}C$ heating for processing the FGD, and recycled fine aggregate showed more favorable result than natural fine aggregate at the FGD content was 5 to 10%. On the other hand, the mortar mixture including recycled fine aggregate had a high drying shrinkage, and absorption ratio, and thus specific limitations on applying recycled fine aggregate should be required.

Effect of the Replacement Ratio and Sources of Blast Furnace Slag Powder on the Fundamental Properties of Recycled Fine Aggregates Based Mortar (고로슬래그 미분말의 산지 및 치환율 변화가 순환잔골재 사용 시멘트 모르타르의 특성에 미치는 영향)

  • Han, Cheon-Goo;Zhao, Yang
    • Journal of the Korea Institute of Building Construction
    • /
    • v.15 no.3
    • /
    • pp.257-263
    • /
    • 2015
  • In this study, the quality of blast furnace slag and the engineering properties of recycled aggregate based mortar with variable replacement of blast furnace slag have been focused. Blast furnace slag(BS) manufactured in various areas in Korea were prepared for this study. For the investigation results, 4 types(among the all of 9 types) of the experimental results were identified as below the standard level when using blast furnace slag chosen from different factories. Especially the particle size of the blast furnace slag was considered as the largest problem. When using BS in the recycled aggregates based mortar, the increase amount of blast furnace slag, increased the fluidity but delayed the setting time and decreased strength at early age. Based on the relationship of the amount of BS and the engineering properties of mortar, this study found that the amount of $SO_3$ and L.O.I affect the setting time, 3 days strength and 91 days strength to the certain standard level.

Effect of Adding Gypsum in Blast-Furnace-Based Mortar's Fundamental Properties (이수석고가 고로슬래그 미분말 활용 무시멘트 모르타르의 기초물성에 미치는 영향)

  • Lu, Liang Liang;Kim, Jun Ho;Park, Jun Hee;Huang, Jin Guang;Baek, Byung Hoon;Han, Cheon Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.137-138
    • /
    • 2013
  • Nowadays, research about using recycled aggregate as alkali activator has been investigated. By the mechanism of Alkali activation, blast furnace slag's potential hydraulis property would be activated. Thee application of this technique is considered as fit for low strength concrete, so it's suitable in concrete secondary production such as bricks and blocks. Aside alkali activator, sulfate could also activate blast furnace slag's potential hydranlis property. In this research, gypsum(CaSO4·2H2O)has been added with blast furnace slag. Fundamental experiment such as flow and strength has been tested to evalnate effect of gypsum's activation property.

  • PDF