• Title/Summary/Keyword: 순환굵은골재 치환율

Search Result 39, Processing Time 0.024 seconds

Basic Study on the Serviceability of Structural Concrete according to Replacement Ratio of Recycled Aggregate (순환굵은골재 치환율에 따른 구조용 콘크리트 사용성에 관한 기초적 연구)

  • Jang, Hyun-Suk;Hong, Seong-Uk;Lee, Young-Taeg;Cho, Young-Sang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.521-524
    • /
    • 2011
  • 본 논문에서는 순환골재에 대하여 구조용 적용성 검증을 목표로 하였으며, 천연골재와 순환골재 치환율에 따른 압축파괴강도와 압축강도증가에 따른 파속도의 상관관계를 비교 분석하였다. 설계기준강도 21, 27, 35MPa에 순환굵은골재 치환율 0, 30, 50, 100%를 적용하여 설계기준강도에 따른 순환굵은골재 치환율의 배합을 총 12가지로 설정하였다. 재령160일까지의 압축파괴강도의 변화를 대기양생 공시체, 수중 양생공시체 그리고 코어공시체를 이용하여 비교하였고, 모의부재(800${\times}$800${\times}$200mm)를 통하여 재령160일까지의 초음파속도를 측정하였다. 압축파괴실험을 통하여 취득한 데이터를 비교해 본 결과 순환굵은골재 치환율에 따른 강도저하현상은 나타나지 않았다. 또한, 재령일에 따른 강도 증가와 함께 파속도도 같이 증가함을 알 수 있었다.

  • PDF

A Study on the Properties of Cementless Artificial Stone by Recycled Coarse Aggregate and Red Mud According to Replacement Ratio (순환 굵은골재 및 레드머드 치환율에 따른 무시멘트 인조석재의 특성에 관한 연구)

  • Park, Ju-Hwa;Pyeon, Su-Jeong;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.1
    • /
    • pp.50-56
    • /
    • 2019
  • This study aims to make artificial stone by recycling blast furnace slag powder, red mud and recycled aggregate, which are known as industrial waste. Recycled aggregate is a typical construction waste, and various recycled products such as concrete block are being sold. In this study, we tried to make artificial stone mixed with waste such as recycled aggregate, and experimented with the use of artificial stone and further study. As the red mud replacement ratio increased, the absorption ratio, fluidity and air content of the matrix were measured to be decreased, and the strength and density were found to increase. The fluidity and absorption ratio decreased with increasing the replacement ratio of recycled aggregate, and the air quantity, rate of aggregate on the surface, density and intensity increased to a certain level. Therefore, this study intends to make artificial stone using recycled resources and conducted basic experiments for further study.

Review of Changes in Mechanical Properties of Concrete According to Recycled Coarse Aggregate Replacement Rate_Case Study (순환 굵은 골재 치환율에 따른 콘크리트의 역학적 특성 변화 검토_사례 연구)

  • Young-Jin Nam;Tae-Hyung Kim;Won-Chang Kim;Tae-Gyu Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.2
    • /
    • pp.178-187
    • /
    • 2024
  • In this study, it was determined that it was necessary to consider the replacement rate when applying recycled coarse aggregate to concrete, so data on existing research trends and results were collected and the mechanical properties of concrete according to the replacement rate of recycled coarse aggregate were analyzed. In collecting data on recycled coarse aggregate, data without processes such as compressive strength and removal of residual mortar attached to recycled coarse aggregate were collected among the concrete measurement items. In the case of concrete with 50 % and 100 % replacement of recycled coarse aggregate, it was confirmed that the mechanical properties were lower or higher than ordinary concrete by -36.0 ~ 9.9 % and -40.0 ~ 10.4 %, respectively, on average. Accordingly, it is judged that additional water should be mixed in consideration of the absorption rate when mixing, and the replacement rate of recycled coarse aggregate, which has mechanical properties of 80 % or more compared to ordinary concrete, should be less than 50 %.

Flexural Behavior of High Strength Reinforced Concrete Beams by Replacement Ratios of Recycled Coarse Aggregate (순환굵은골재 치환율에 따른 고강도 철근콘크리트 보의 휨 거동)

  • Lee, Yong-Taeg;Hong, Seung-Uk;Kim, Seung-Hun;Baek, Sang-Ki;Cho, Young-Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Recently, natural aggregate was adequate to supply the demand due to increase of building construction. National pollution induced by construction waste caused by the reconstruction and redevelopment was cited as the major social issues in Korea. Therefore, government are required by law to use the recycled aggregate. In order to consider safety, KS F 2573 recommend that recycled aggregate with below design strength 27MPa and replacement ratio of 30%. This study on flexural behaviors of reinforced concrete beam was conducted and the specimens employed in test were planed with high strength concrete (40, 50 and 60MPa) and recycled aggregate replacement ratio (0, 30, 50, 100%). Although the flexural strength of reinforced concrete beam has trendy to decrease with increase of replacement ratio, it is meet to KCI 2007. The comparison results show that reinforced concrete beam using recycled aggregate can apply as flexural member in building construction.

The Bond Characteristics of Deformed Bars in Recycled Coarse Aggregates Concrete (RCAC) (순환골재 콘크리트와 이형철근의 부착 특성)

  • Jeon, Su-Man;Yun, Hyun-Do;Choi, Ki-Sun;You, Young-Chan;Kim, Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.165-173
    • /
    • 2008
  • One of the most important requirements for reinforced concrete constructions is the bond behavior between concrete and reinforcement. For practical application, it is very important to study bond behavior of reinforcing bars in recycled aggregate concrete (RAC). Thirty six pull-out tests were carried out in order to investigate the bond behaviour between recycled coarse aggregate concrete (RCAC) and deformed bars. RCA replacement ratios (i.e., 0%, 30%, 60% and 100%) and positions of deformed bar (i.e., vertical and horizontal position) were considered as variables in this paper. Each specimen was in the form of a cube, with edges of 150 mm in length and for the pull-out tests, a deformed bar, 13 mm in diameter, was embedded in the center of each specimen. Based on the test results, the bond strength between the RCAC and deformed bars were influenced by both RCA replacement ratios and positions of deformed bars. It was found that under the equivalent mix proportion (i.e., the mix proportions are the same, except for different RCA replacement ratios), the bond strength between the RCAC and the ribbed bar has no obvious relation with the RCA replacement ratio, whereas the positions of deformed bars have a significant effect on the bond behavior between the RCAC and deformed bars. Under the condition of same RCA replacement ratio, the specimen of horizontal reinforcement at upper position (HU type) appear considerably low bond stress.

Mechanical Properties of Recycled Aggregate Concrete Containing Fly Ash (순환골재를 이용한 플라이애시 콘크리트의 역학적 특성)

  • Yang, In-Hwan;Jeon, Byeong-Gwan
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.2
    • /
    • pp.144-151
    • /
    • 2017
  • The mechanical properties such as compressive strength and elastic modulus of recycled aggregate concrete containing fly ash are investigated in this study. The experimental parameters were replacement ratio of recycled coarse aggregate(RCA) and fly ash. Replacement ratio of RCA was 0, 30, 50, and 70% and replacement ratio of fly ash was 0, 15, 30%. The experimental results were extensively discussed about compressive strength and elastic modulus of concrete at ages of 7, 28 and 91 days. Compared with concrete not containing fly ash, the decrease of compressive strength and elastic modulus of concrete containing fly ash with the replacement ratio of 30% was significant. Therefore, the test results represented that the fly ash replacement ratio of less than 30% was favorable in terms of mechanical properties of recycled coarse aggregate concrete.

Effect of Recycled Coarse Aggregate on Compressive Strength and Mechanical Properties of Concrete (순환굵은골재가 콘크리트의 압축강도 및 역학적 특성에 미치는 영향)

  • Yang, In-Hwan;Jeong, Joon-Young
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.1
    • /
    • pp.105-113
    • /
    • 2016
  • Most studies on mechanical properties of concrete with recycled aggregate was focused on the concrete with compressive strength of less than 40 MPa. Therefore, this paper concerns the compressive strength and mechanical properties of concrete with compressive strength of greater than 40 MPa containing recycled coarse aggregate (RCA). The experimental parameters were compressive strength level and replacement ratio of RCA. Compressive strength level was 45 and 60 MPa, and replacement ratio of RCA was 30, 50, 70 and 100%. The results of the test were discussed: compressive strength, elastic modulus, split tensile strength and modulus of rupture. Test results of elastic modulus were compared to the design code predictions. The design code predictions for elastic modulus overestimated the experimental results. However, the design code predictions for modulus of rupture were generally in agreement with the measured values.

Characterization of Compressive Strength and Elastic Modulus of Recycled Aggregate Concrete with Respect to Replacement Ratios (순환골재 치환율에 따른 순환골재콘크리트의 압축강도 및 탄성계수 특성)

  • Sim, Jongsung;Park, Cheolwoo;Park, Sung Jae;Kim, Yong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.1A
    • /
    • pp.213-218
    • /
    • 2006
  • As a manufacturing process of recycled aggregate improves the quality of recycled aggregate shall be sufficient enough to be used for structural concrete. This study characterized compressive strength and elastic modulus of concrete that used recycled coarse and fine aggregate. Before the strength tests, the fundamental characteristics of recycled aggregate were preliminarily analyzed and the recycled aggregate satisfied the class 1 requirements in KS F 2573. As the replacement ratio increased, the compressive strength and elastic modulus of recycled aggregate concrete decreased. When the coarse and fine aggregates were completely replaced with the recycled, the compressive strength and elastic modulus were decreased by 13% and 31%, respectively. Based on the test results, this study suggests equations for predicting the compressive strength and elastic modulus of the recycled aggregate concrete with respect to the replacement ratio. The values from the equations were in good agreement with the test data from this study and others.

The Strength and Length Change Properties of Recycled Aggregate Concrete(RAC) by Compressive Strength Levels (압축강도 수준별 순환골재 콘크리트의 강도와 길이변화 특성)

  • Lee, Bong-Chun;Lee, Jun;Cho, Young-Keun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.307-312
    • /
    • 2015
  • This paper addresses mechanical properties and length change performance of the recycled aggregate concretes(RAC) in which natural coarse was replaced by recycled coarse aggregate(RCA) by compressive strength levels(20, 35, 50 MPa). A total of 9 RAC were produced and classified into three series, each of which included three mixes designed with three compressive strength levels of 20 MPa, 35 MPa and 50 MPa and three RCA replacement ratios of 0, 50 and 100%. Physical/Mechanical properties of RAC were tested for slump test, compressive strength, and length change. The test results indicated that the workability of RC could be improved or same by RCA replacement ratios, when compared with that containing no RCA. This is probably because of the RCA shape improving the workability of RAC. Also, the test results showed that the compressive strength was decreased by 9~10% as the RCA replacement ratios increase. However, the length change ratio by the RCA replacement ratios increased regardless of compressive strength levels. At 20 MPa level, the length change ratio was 8~40% which was much higher than that of 4~17% at both 35 and 50 MPa levels. Therefore, it was considered that such admixture addition preventing dry shrinkage is required in order to improve the properties of the RAC at 20 MPa level.

Strength of Recycled Concrete with Furnace Slag Cement under Steam Curing Condition (순환골재 및 고로슬래그 시멘트를 사용한 증기양생 콘크리트의 강도 특성)

  • Lee Myung-Kue;Kim Kwang-Seo;Lee Keun-Ho;Jung Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.613-620
    • /
    • 2005
  • There are some problems in utilizing recycled concrete aggregate go structural use because of the difficulties concerning about quality control and durability. It seems to be possible to utilize recycled concrete aggregate for making concrete products because quality control of concrete products is easier than ready-mixed concrete, but there are little studies about the properties of the steam-cured recycled aggregate concrete. In this study, various tests were performed such as compressive strength, flexural strength, splitting tensile strength, bonding strength and chloride ion penetration test to evaluate the effect of substitution of recycled concrete aggregate. The results of strength test showed that the concrete strength decreased with the increase of the substitution ratio of recycled concrete aggregate, but it was in the reasonable range and almost equal to that of normal concrete below the substitution ratio of $50\%$. On the other hand, strength test of furnace slag cement concrete shows that the strength of recycled concrete with furnace slag cement under curing condition lower than that of recycled concrete with ordinary portland cement under same condition. From the result of this study, it can be concluded that recycled concrete aggregate is able to be utilized for structural use but substitution ratio should be decided with care in each case. The result of this study could be used as the basic data for the structural use of recycled concrete aggregate.