• Title/Summary/Keyword: 순환골재 분말

Search Result 19, Processing Time 0.021 seconds

Mechanical Properties of Lightweight Mortar in Accordance with the Particle Size and Replacement Ratio of the Wasted Tire Chip (폐타이어 분말의 치환율과 입자크기에 따른 경량 모르타르의 역학적 특성)

  • Yang, Hun;Lee, Yong;Lee, Sang-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.4
    • /
    • pp.342-347
    • /
    • 2015
  • This study is basic experiment which prevents indiscriminate reclamation and recycles the wasted tire in order to solve environmental pollution according to generation rate of the wasted tire from recently industrial development. By applying as the substitute material of the lightweight aggregate among the constructional materials in order to evaluate the lightness of the wasted tire chip and suggest the recycling plan of the wasted tire chip. The prior experiment did the replacement ratio of the wasted tire with 20%, 40%, 60%, 80%, 100%, etc. and made a study on the strength and density properties. Based on the prior experiment of wasted tire, the replacement ratio was fixed at 15, 20, 25%, particle size of wasted tire was fixed at 0.2, 0.8, 1~2, 3~5, 5~7(mm). As a result, it is supposed that the best replacement ratio and particle size are 15% and 1~2mm, respectively.

A Study of the Strength and Durability Properties on Recycled Aggregate Concrete and Blain of Blast Furnace Slag (고로슬래그의 분말도 및 순환골재 치환율에 따른 콘크리트의 강도 및 내구적 특성에 관한 연구)

  • Lim, Myung-Kwan;Park, Moo-Young;Jung, Sang-Jin
    • Journal of the Korea Institute of Building Construction
    • /
    • v.7 no.4
    • /
    • pp.101-108
    • /
    • 2007
  • Furnace slag powder used currently in Korea needs to add special functions in response to the increase of large-scale projects. In addition, it is advantageous in that it has a lower hydration heat emission rate than ordinary Portland cement and improves properties such as the inhibition of alkali aggregate reaction, watertightness, salt proofness, seawater resistance and chemical resistance. However, furnace slag powder is not self -hardening, and requires activators such as alkali for hydration. Accordingly, if recycled fine aggregate, from which calcium hydroxide is generated, and furnace slag, which requires alkali stimulation, are used together they play mutually complementary roles, so we expect to use the mixture as a resource-recycling construction material. Thus the present study purposed to examine the properties and characteristics of furnace slag powder and recycled aggregate, to manufacture recycled fine aggregate concrete using furnace slag and analyze its performance based on the results of an experiment, to provide materials on concrete using furnace slag as a cement additive and recycled fine aggregate as a substitute of aggregate, and ultimately to provide basic materials on the manufacturing of resource-recycled construction materials using binder and fine aggregate as recycled resources.

Flame Retardant Properties of Polymer Cement Mortar Mixed with Light-weight Materials for 3D Printing (3D 프린팅용 경량재료 혼입 폴리머 시멘트 모르타르의 난연특성)

  • Son, Bae-Geun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.330-337
    • /
    • 2021
  • 3D printing is not only at the fundamental study and small-scale level, but has recently been producing buildings that can be inhabited by people. Buildings require a lot of cost and labor to work on the form work, but if 3D printing is applied to the building, the construction industry is received attention from technologies using 3D printing as it can reduce the construction period and cost. 3D printing technology for buildings can be divided into structural and non-structural materials, of which 3D printing is applied to non-structural materials. Because 3D printing needs to be additive manufacturing, control such as curing speed and workability is needed. Since cement mortar has a large shrinkage due to evaporation of water, cement polymer dispersion is used to improve the hardening speed, workability, and adhesion strength. The addition of polymer dispersion to cement mortar improves the tensile strength and brittleness between the cement hydrate and the polymer film. Cement mortar using polymer materials can be additive manufacturing but it has limited height that can be additive manufacturing due to its high density. When light-weight materials are mixed with polymer cement mortar, the density of polymer cement mortar is lowered and the height of additive manufacturing, so it is essential to use light-weight materials. However, the use of EVA redispersible polymer powder and light-weight materials, additional damage such as cracks in cement mortar can occur at high temperatures such as fires. This study produced a test specimen incorporating light-weight materials and EVA redispersible polymer powder to produce exterior building materials using 3D printing, and examined flame resistance performance through water absorption rate, length change rate, and cone calorimeter test and non-flammable test. From the test result, the test specimen using silica sand and light-weight aggregate showed good flame resistance performance, and if the EVA redispersible polymer powder is applied below 5%, it shows good flame resistance performance.

Utilizability of Waste Concrete Powder as a Material for Soil Pavement (흙도로포장용 재료로서 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.3
    • /
    • pp.277-282
    • /
    • 2015
  • This study is conducted to utilize waste concrete powder (WCP) made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was $928cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. For using WCP in soil cement-based pavement, the qualities, physical and chemical properties, of WCP should be researched. In the first step, the specified compressive strength of mortar for two types of clay sand soil and clay soil respectively was experimented to be 15 MPa and then optimum mixing ratio of chemical solidification agent were decided in the range of 1.5 - 3.0% in the replacement with cement weight content. In the second step, based on the prior experimental results, recycling possibility of WCP in soil cement-based pavement was studied. In the result of experiment the mixing ratio of WCP were 5, 10, 15 and 20% in the replacement with soil weight and the compressive strength of mortar was somewhat decreased according to the increase of the mixing ratio of WCP.

Fundamental Properties of Mortar with Magnet-Separated Converter-Slag Powder as SCM (자력 선별 전로슬래그 미분말을 결합재로 활용한 모르타르의 기초특성)

  • Beom-Soo Kim;Sun-Mi Choi;Jin-Man Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.3
    • /
    • pp.161-168
    • /
    • 2023
  • Converter slag is a by-product generated by refining the pig iron produced into molten steel in the blast furnace, occupying about 15 % of the weight of steel production. It has a high free-CaO content that can generate expansion cracks when used for concrete aggregate. This is the main reason to make it difficult to recycle. To solve this problem, government guideline requires that converter slag has to be aged in an open yard for 90 days. However, aging can not be perfectly performed because it entails time and cost. In this study, we tried to investigate the applicability of converter slag as a cementitious material rather than an aggregate by mixing converter slag with mortar formulations. According to the EDS results of the converter slag in the experiment, we found that screening in the aggregate phase was more effective than that in the powder phase. When the particles separated by a magnet in the aggregate state were pulverized and used for concrete up to a 15 % replacement ratio, various engineering characteristics, such as flow, length change, and compressive strength, showed engineering characteristics similar to those of the control mix.

Improvement and Seismic Performance Evaluation of RC Exterior Beam-Column Joints Using Recycled Coarse Aggregate with Hybrid Fiber (순환굵은골재 치환과 하이브리드섬유 혼입에 따른 철근콘크리트 외부 보-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Jae-Hoon;Ha, Gee-Joo;Shin, Jong-Hak
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.160-169
    • /
    • 2015
  • In this study, experimental research was carried out to improve the seismic performance of reinforced concrete exterior beam-column joint regions using replacing recycled coarse aggregate with hybrid fiber (steel fiber+PVA fiber) in existing reinforced concrete building. Therefore it was constructed and tested seven specimens retrofitting the beam-column joint regions using such retrofitting materials. Specimens, designed by retrofitting the beam-column joint regions of reinforced concrete building, were showed the stable failure mode and increase of load-carrying capacity due to the effect of crack control at the times of initial loading and bridge of retrofitting hybrid fiber during testing. Specimens BCJGPSR series, designed by the retrofitting of replacing recycled coarse aggregate with hybrid fiber in reinforecd beam-column joint regions were increased its maximum load carrying capacity by 1.01~1.04 times and its energy dissipation capacity by 1.06~1.29 times in comparison with standard specimen BCJS. Also, specimen $BCJGPSR_1$ were increased its energy dissipation capacity by 1.33~1.65 times in comparison with specimens BCJS, BCJP and BCJGPR series for a displacement ductility of 9.

A study on the application of waste concrete powder as a material for construction (건설용 재료로써 폐콘크리트 미분말의 활용성 연구)

  • Kim, Yong-Jic;Choi, Yun-Wang;Kim, Sang-Chel;Kim, Young-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.7 no.4
    • /
    • pp.88-94
    • /
    • 2012
  • This study is conducted to utilize waste concrete powder made as a by-product manufacturing high quality recycled aggregate. The blaine fineness of the used waste concrete powder was 928 and $1,360cm^2/g$. As the main characteristic of waste concrete powder, it showed an angular type similar to cement, but hydrated products were attached on the surface of particles. In addition, the size of the particles of waste concrete powder was larger than OPC and in terms of chemical components it had higher $SiO_2$ contents. The viscosity of the paste that mixed waste concrete power decreased by 62% at the most, compared to the paste that only used OPC, and the final set time was delayed about two hours. As composition rates of waste concrete powder increased, the flow value decreased by 30% at the most according to the comparison with mortar that only used OPC, and sorptivity coefficients increased by 70%. The compressive strength of mortar decreased by 73% at the most as composition rates of waste concrete powder increased. According to the test results, it is desirable to use waste concrete powder by combining OPC appropriately(below 15%).

  • PDF

Experimental Study on Durability Properties of High Performance Concrete on Using Hydraulic Mineral Admixtures for Bridge Deck Overlay (수경성 광물질 혼합재를 사용한 교면 덧씌우기용 고성능 콘크리트의 내구성능에 관한 실험적 연구)

  • Kim, Ki-Hyung;Son, Hyung-Ho;Jung, Ho-Jin;Lee, Jae-Nam
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.2
    • /
    • pp.74-80
    • /
    • 2011
  • In this study, it is evaluated on the properties of mechanical performance, autogenous shrinkage and chloride resistance for application of high performance concrete for bridge deck overlay used slag powder and fly ash as a representative by-product of industrialization. According to test results, it is evaluated that the durability of concrete is improved the properties of chloride resistance, autogenous shrinkage and alkali aggregate reaction by using hydraulic mineral admixtures. It is considered to have a green construction and an economic feasibility on recycling of by-product as a improved concrete for durability and efficiency in materials and constructions.

  • PDF

Evaluation Method of Healing Performance of Self-Healing Materials Based on Equivalent Crack Width (등가균열폭에 기반한 자기치유 재료의 치유성능 평가 방법)

  • Lee, Woong-Jong;Kim, Hyung-Suk;Choi, Sung;Park, Byung-Sun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.383-388
    • /
    • 2021
  • In this study, constant head water permeability test was adopted to evaluate self-healing performance of mortars containing inorganic healing materials which consist of blast furnace slag, sodium sulfate and anhydrite. Clinker powder and sand replaced for a part of cement and fine aggregates. On constant head water permeability test for self-healing mortars, unit water flow rate of mortar specimens were measured according to crack width and healing period. As a result of evaluating the healing performance of self-healing mortar, it was confirmed that with the initial crack width of 0.3mm, the healing rate at healing period of 28 days increased by more than 30%p compared to plain mortar, greatly improving the healing performance. Furthermore, the coefficient(α) which was estimated from the relationship between crack width and unit water flow rate was used for calculating equivalent crack width. By analyzing the correlation of healing rate and equivalent crack width, the time and initial crack width attaining healing target crack width were predicted.