• Title/Summary/Keyword: 순차탐색

Search Result 188, Processing Time 0.029 seconds

An Efficient Depth First Algorithm for Mining Sequential Patterns with Quantities (퀀터티가 있는 순차 패턴을 찾는 깊이 우선 탐색 알고리즘)

  • 김철연;심규석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.04b
    • /
    • pp.13-15
    • /
    • 2004
  • 순차 패턴을 찾는 것은 데이타 마이닝 응용분야에서 중요한 문제이다. 기존의 순차 패턴 마이닝 알고리즘들은 아이템으로만 이루어진 순차 패턴만을 취급하였으나 Apriori-QSP에서는 새롭게 퀀터티 정보에 대한 처리의 개념을 도입하였다. 전채 순차 패턴을 찾는 알고리즘들은 너비 우선 탐색과 깊이 우선 탐색 기법으로 분류할 수 있는데, 이러한 분류에서 Apriori-QSP알고리즘은 너비 우선 탐색 기법으로 분류할 수 있다. 본 논문에서는 퀀터티 정보를 처리하는 깊이 우선 탐색 기법을 제안하였다. Apriori-QSP에서 제안되었던 후보패턴 생성에 대한 필터링파 샘플링 기법을 깊이 우선 탐색의 탐색 기법으로 적용하였으며, 다양한 실험 결과들이 깊이 우선 탐색에서도 이러한 기법이 효율적임을 보여 주고 있다. 또한 길이가 긴 순차 패턴 마이닝의 경우 너비우선 탐색에 비해 향상된 성능을 보임을 확인하였다.

  • PDF

Mining Approximate Sequential Patterns in a Large Sequence Database (대용량 순차 데이터베이스에서 근사 순차패턴 탐색)

  • Kum Hye-Chung;Chang Joong-Hyuk
    • The KIPS Transactions:PartD
    • /
    • v.13D no.2 s.105
    • /
    • pp.199-206
    • /
    • 2006
  • Sequential pattern mining is an important data mining task with broad applications. However, conventional methods may meet inherent difficulties in mining databases with long sequences and noise. They may generate a huge number of short and trivial patterns but fail to find interesting patterns shared by many sequences. In this paper, to overcome these problems, we propose the theme of approximate sequential pattern mining roughly defined as identifying patterns approximately shared by many sequences. The proposed method works in two steps: one is to cluster target sequences by their similarities and the other is to find consensus patterns that ire similar to the sequences in each cluster directly through multiple alignment. For this purpose, a novel structure called weighted sequence is presented to compress the alignment result, and the longest consensus pattern that represents each cluster is generated from its weighted sequence. Finally, the effectiveness of the proposed method is verified by a set of experiments.

Mining Frequent Sequential Patterns over Sequence Data Streams with a Gap-Constraint (순차 데이터 스트림에서 발생 간격 제한 조건을 활용한 빈발 순차 패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.9
    • /
    • pp.35-46
    • /
    • 2010
  • Sequential pattern mining is one of the essential data mining tasks, and it is widely used to analyze data generated in various application fields such as web-based applications, E-commerce, bioinformatics, and USN environments. Recently data generated in the application fields has been taking the form of continuous data streams rather than finite stored data sets. Considering the changes in the form of data, many researches have been actively performed to efficiently find sequential patterns over data streams. However, conventional researches focus on reducing processing time and memory usage in mining sequential patterns over a target data stream, so that a research on mining more interesting and useful sequential patterns that efficiently reflect the characteristics of the data stream has been attracting no attention. This paper proposes a mining method of sequential patterns over data streams with a gap constraint, which can help to find more interesting sequential patterns over the data streams. First, meanings of the gap for a sequential pattern and gap-constrained sequential patterns are defined, and subsequently a mining method for finding gap-constrained sequential patterns over a data stream is proposed.

SuffixSpan: A Formal Approach For Mining Sequential Patterns (SuffixSpan: 순차패턴 마이닝을 위한 형식적 접근방법)

  • Cho, Dong-Young
    • The Journal of Korean Association of Computer Education
    • /
    • v.5 no.4
    • /
    • pp.53-60
    • /
    • 2002
  • Typical Apriori-like methods for mining sequential patterns have some problems such as generating of many candidate patterns and repetitive searching of a large database. And PrefixSpan constructs the prefix projected databases which are stepwise partitioned in the mining process. It can reduce the searching space to estimate the support of candidate patterns, but the construction cost of projected databases is still high. For efficient sequential pattern mining, we need to reduce the cost to generate candidate patterns and searching space for the generated ones. To solve these problems, we proposed SuffixSpan(Suffix checked Sequential Pattern mining), a new method for sequential pattern mining, and show a formal approach to our method.

  • PDF

Optimizing Feature Extractioin for Multiclass problems Based on Classification Error (다중 클래스 데이터를 위한 분류오차 최소화기반 특징추출 기법)

  • Choi, Eui-Sun;Lee, Chul-Hee
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.2
    • /
    • pp.39-49
    • /
    • 2000
  • In this paper, we propose an optimizing feature extraction method for multiclass problems assuming normal distributions. Initially, We start with an arbitrary feature vector Assuming that the feature vector is used for classification, we compute the classification error Then we move the feature vector slightly in the direction so that classification error decreases most rapidly This can be done by taking gradient We propose two search methods, sequential search and global search In the sequential search, an additional feature vector is selected so that it provides the best accuracy along with the already chosen feature vectors In the global search, we are not constrained to use the chosen feature vectors Experimental results show that the proposed algorithm provides a favorable performance.

  • PDF

A Gap-based Weighting Approach in Mining Sequential Patterns (순차패턴 마이닝에서 발생 간격 기반 가중치 부여 기법)

  • Chang, Joong-Hyuk;Shin, Mu-Jong
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.300-303
    • /
    • 2010
  • 순차패턴 마이닝에서 관심도가 큰 순차패턴을 얻기 위해서 구성요소의 단순 발생 순서뿐만 아니라 구성요소의 가중치를 추가로 고려할 수 있다. 본 논문에서는 순차패턴 마이닝에서 가중치 순차패턴을 탐색하기 위한 가중치 계산 기법으로 발생 간격에 기반한 순차패턴 가중치 부여 기법을 제안한다. 발생 간격 기반 가중치는 사전에 정의된 별도의 가중치 정보를 필요로 하지 않으며 순차정보를 구성하는 구성요소들의 발생 간격으로부터 구해진다. 즉, 순차패턴의 가중치를 구하는데 있어서 구성요소의 발생 순서와 더불어 이들의 발생 간격을 고려하며, 따라서 보다 관심도가 크고 유용한 순차패턴을 얻도록 지원한다.

A Sequential Pattern Mining based on Dynamic Weight in Data Stream (스트림 데이터에서 동적 가중치를 이용한 순차 패턴 탐사 기법)

  • Choi, Pilsun;Kim, Hwan;Kim, Daein;Hwang, Buhyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.137-144
    • /
    • 2013
  • A sequential pattern mining is finding out frequent patterns from the data set in time order. In this field, a dynamic weighted sequential pattern mining is applied to a computing environment that changes depending on the time and it can be utilized in a variety of environments applying changes of dynamic weight. In this paper, we propose a new sequence data mining method to explore the stream data by applying the dynamic weight. This method reduces the candidate patterns that must be navigated by using the dynamic weight according to the relative time sequence, and it can find out frequent sequence patterns quickly as the data input and output using a hash structure. Using this method reduces the memory usage and processing time more than applying the existing methods. We show the importance of dynamic weighted mining through the comparison of different weighting sequential pattern mining techniques.

Searching Sequential Patterns by Approximation Algorithm (근사 알고리즘을 이용한 순차패턴 탐색)

  • Sarlsarbold, Garawagchaa;Hwang, Young-Sup
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.29-36
    • /
    • 2009
  • Sequential pattern mining, which discovers frequent subsequences as patterns in a sequence database, is an important data mining problem with broad applications. Since a sequential pattern in DNA sequences can be a motif, we studied to find sequential patterns in DNA sequences. Most previously proposed mining algorithms follow the exact matching with a sequential pattern definition. They are not able to work in noisy environments and inaccurate data in practice. Theses problems occurs frequently in DNA sequences which is a biological data. We investigated approximate matching method to deal with those cases. Our idea is based on the observation that all occurrences of a frequent pattern can be classified into groups, which we call approximated pattern. The existing PrefixSpan algorithm can successfully find sequential patterns in a long sequence. We improved the PrefixSpan algorithm to find approximate sequential patterns. The experimental results showed that the number of repeats from the proposed method was 5 times more than that of PrefixSpan when the pattern length is 4.

Finding Weighted Sequential Patterns over Data Streams via a Gap-based Weighting Approach (발생 간격 기반 가중치 부여 기법을 활용한 데이터 스트림에서 가중치 순차패턴 탐색)

  • Chang, Joong-Hyuk
    • Journal of Intelligence and Information Systems
    • /
    • v.16 no.3
    • /
    • pp.55-75
    • /
    • 2010
  • Sequential pattern mining aims to discover interesting sequential patterns in a sequence database, and it is one of the essential data mining tasks widely used in various application fields such as Web access pattern analysis, customer purchase pattern analysis, and DNA sequence analysis. In general sequential pattern mining, only the generation order of data element in a sequence is considered, so that it can easily find simple sequential patterns, but has a limit to find more interesting sequential patterns being widely used in real world applications. One of the essential research topics to compensate the limit is a topic of weighted sequential pattern mining. In weighted sequential pattern mining, not only the generation order of data element but also its weight is considered to get more interesting sequential patterns. In recent, data has been increasingly taking the form of continuous data streams rather than finite stored data sets in various application fields, the database research community has begun focusing its attention on processing over data streams. The data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. In data stream processing, each data element should be examined at most once to analyze the data stream, and the memory usage for data stream analysis should be restricted finitely although new data elements are continuously generated in a data stream. Moreover, newly generated data elements should be processed as fast as possible to produce the up-to-date analysis result of a data stream, so that it can be instantly utilized upon request. To satisfy these requirements, data stream processing sacrifices the correctness of its analysis result by allowing some error. Considering the changes in the form of data generated in real world application fields, many researches have been actively performed to find various kinds of knowledge embedded in data streams. They mainly focus on efficient mining of frequent itemsets and sequential patterns over data streams, which have been proven to be useful in conventional data mining for a finite data set. In addition, mining algorithms have also been proposed to efficiently reflect the changes of data streams over time into their mining results. However, they have been targeting on finding naively interesting patterns such as frequent patterns and simple sequential patterns, which are found intuitively, taking no interest in mining novel interesting patterns that express the characteristics of target data streams better. Therefore, it can be a valuable research topic in the field of mining data streams to define novel interesting patterns and develop a mining method finding the novel patterns, which will be effectively used to analyze recent data streams. This paper proposes a gap-based weighting approach for a sequential pattern and amining method of weighted sequential patterns over sequence data streams via the weighting approach. A gap-based weight of a sequential pattern can be computed from the gaps of data elements in the sequential pattern without any pre-defined weight information. That is, in the approach, the gaps of data elements in each sequential pattern as well as their generation orders are used to get the weight of the sequential pattern, therefore it can help to get more interesting and useful sequential patterns. Recently most of computer application fields generate data as a form of data streams rather than a finite data set. Considering the change of data, the proposed method is mainly focus on sequence data streams.

Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons (특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교)

  • 오일석;이진선;문병로
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1113-1120
    • /
    • 2004
  • This paper proposes a novel hybrid genetic algorithm for the feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of the fine-tuning power, and their effectiveness and timing requirement are analyzed and compared. Experimentations performed with various standard datasets revealed that the proposed hybrid GA is superior to a simple GA and sequential search algorithms.