• Title/Summary/Keyword: 순차적 예측오차방법

Search Result 17, Processing Time 0.024 seconds

Optimal Network Selection Method for Artificial Neural Network Downscaling Method (인공신경망 Downscaling모형에 있어서 최적신경망구조 선택기법)

  • Kang, Boo-Sik;Ryu, Seung-Yeop;Moon, Su-Jin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.1605-1609
    • /
    • 2010
  • CGCM3.1 SRES B1 시나리오의 2D 변수들을 입력값으로 인공신경망 모형을 이용한 스케일 상세화기법으로 강부식(2009)은 소양강댐 유역의 월 누적강수 경향분석을 실시하였다. 원시 GCM 시나리오를 스케일 상세화 시키기 위한 기법의 하나로 인공신경망 모형을 사용할 수 있는데, 이 경우 GCM에서 모의되는 강수플럭스, 해면기압, 지표면 근처에서의 일 평균온도, 지표면 근처에서의 일평균온도, 지표면으로부터 발생하는 잠열플럭스 등과 같은 22개의 변수를 잠재적인 예측인자로 사용하여 신경망을 구성하게 된다. 입력변수세트의 구성은 인공신경망의 계산 효율을 좌우하는 중요한 요소라 할 수 있다. 본 연구에서는 변수의 물리적 특성을 고려하여 순차적인 변수선택을 통한 신경망 입력변수 세트를 구성하고 입력세트 간의 학습성과 비교를 통하여, 최적 입력변수 선정 및 신경망의 학습효과를 높일 수 있는 방법에 대해 연구하였다. 물리적 상관성이 높다고 판단되는 GCM_Prec, huss, ps를 입력변수로 하여 순차적인 케이스를 학습해본 결과 huss와 ps를 입력변수로 하는 케이스에 대해서 적은 오차와 높은 상관성을 보였다, 또한, 신경망의 학습 효과를 높이기 위해 홍수기와 비홍수기로 구분하여 학습한 결과 홍수기와 비홍수기로 구분하여 신경망을 구성하였을 경우가 향상된 모의값을 나타내었다. 기후변화모의자료는 CCCma(Canadian Center for Climate Modeling and Analysis)에서 제공되는 CGCM3.1/T63 20C3M 시나리오를 사용하였으며, 관측값으로는 AWS에서 제공된 일 누적강수를 사용하였다. 인공신경망의 학습기간은 1997년부터 2000년이며, 검증기간은 2001년부터 2004년으로 구성하였다.

  • PDF

Improved full-waveform inversion of normalised seismic wavefield data (정규화된 탄성파 파동장 자료의 향상된 전파형 역산)

  • Kim, Hee-Joon;Matsuoka, Toshifumi
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.86-92
    • /
    • 2006
  • The full-waveform inversion algorithm using normalised seismic wavefields can avoid potential inversion errors due to source estimation required in conventional full-waveform inversion methods. In this paper, we have modified the inversion scheme to install a weighted smoothness constraint for better resolution, and to implement a staged approach using normalised wavefields in order of increasing frequency instead of inverting all frequency components simultaneously. The newly developed scheme is verified by using a simple two-dimensional fault model. One of the most significant improvements is based on introducing weights in model parameters, which can be derived from integrated sensitivities. The model-parameter weighting matrix is effective in selectively relaxing the smoothness constraint and in reducing artefacts in the reconstructed image. Simultaneous multiple-frequency inversion can almost be replicated by multiple single-frequency inversions. In particular, consecutively ordered single-frequency inversion, in which lower frequencies are used first, is useful for computation efficiency.

Back Analysis of the Earth Wall in Multi-layered Subgrade (다층지반에 근입된 흙막이 벽의 역해석에 관한 연구)

  • 이승훈;김종민;김수일;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.1
    • /
    • pp.71-78
    • /
    • 2002
  • This paper presents a back-calculation technique leer the prediction of the behavior of earth wall inserted in multi-layered soil deposit. The soil properties are back-calculated from the measured displacement at each construction stage and the behavior of earth wall far the next construction stage is predicted using back-calculated soil properties. For multi-layered soil deposit, the back-calculation would be very difficult due to the increase in the number of variables. In this study, to solve this difficulty, the back-calculation was performed successively from the lowest layer to the upper layers. An efficient elasto-plastic beam-column analysis was used for forward analysis to minimize the computation time of iterative back-calculation procedure. The coefficients of subgrade reaction and lateral earth pressure necessary for the formation of p-y curve were selected as back calculation variables, and to minimize the effect of abnormal behavior of the wall which might be caused by any unexpected action during construction, the difference between measured displacement increment and computed displacement increment at each construction stages is used as the objective function of optimization. The constrained sequential linear programming was used for the optimization technique to found values of variables minimizing the objective function. The proposed method in this study was verified using numerically generated data and measured field data.

An Improved Calibration Method for the COCOMO II Post-Architecture Model

  • Yoon, Myoung-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.5 no.2
    • /
    • pp.47-55
    • /
    • 2000
  • To date many software engineering cost models have been developed to predict cost, schedule, and effort of the software under development. The COCOMO Ⅱ is well- suited for the new software development life cycle such as non-sequential and rapid- development processes. The traditional regression approach based on the least square criterion is the most commonly used technique for empirical calibration in the COCOMO Ⅱ model. It has a few assumptions frequently violated by software engineering data sets. The source data is also generally imprecise in reporting size effort, and cost-driver ratings, particularly across different organizations. And that the outlier for the source data is a peculiarity and indicates a data point. To cope with difficulties, in this paper, we propose a new regression method for calibrating COCOMO Ⅱ post-architecture model based on the minimum relative error(MRE) criterion. The characteristic of the proposed method is insensitive to the extreme values of the data in the empirical calibration. As the experimental results, It is evident that our proposed calibration method MRE was shown to be superior to the traditional regression approach for model calibration, as illustrated by the values obtained for standard deviation(^σ), and prediction at level LPRED(L) measures.

  • PDF

A Comparison of Calibration Methods for the COCOMO II Post-Architecture Model (COCOMOII의 후구조 모델에 대한 캘리브레이션 방법 비교)

  • Yoon, Myoung-Young
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2000.05a
    • /
    • pp.135-143
    • /
    • 2000
  • The COCOMO Ⅱ model is well-suited for the new software development life cycle such as non-sequential and rapid-development processes. The traditional regression approach based on the least square criterion is the most commonly used technique for empirical calibration in the COCOMO Ⅱ model. But it has a few assumptions frequently violated by software engineering data sets. It is true that the source data is also generally imprecise in reporting size, effort, and cost-driver ratings, particularly across different organizations. And that the outlier for the source data is a peculiarity and indicates a data pint To cope with difficulties, in this paper, we propose a new regression method for calibrating COCOMO Ⅱ post-architecture model based on the minimum relative erro(MRE) criterion. The characteristic of the proposed method is insensitive to the extreme values of the data in the empirical calibration. As the experimental results, It is evident that our proposed calibration method MRE was shown to be superior to the traditional regression approach for model calibration, as illustrated by the values obtained for standard deviation(^σ), and prediction at level L PRED(L) measures.

  • PDF

Index-based Searching on Timestamped Event Sequences (타임스탬프를 갖는 이벤트 시퀀스의 인덱스 기반 검색)

  • 박상현;원정임;윤지희;김상욱
    • Journal of KIISE:Databases
    • /
    • v.31 no.5
    • /
    • pp.468-478
    • /
    • 2004
  • It is essential in various application areas of data mining and bioinformatics to effectively retrieve the occurrences of interesting patterns from sequence databases. For example, let's consider a network event management system that records the types and timestamp values of events occurred in a specific network component(ex. router). The typical query to find out the temporal casual relationships among the network events is as fellows: 'Find all occurrences of CiscoDCDLinkUp that are fellowed by MLMStatusUP that are subsequently followed by TCPConnectionClose, under the constraint that the interval between the first two events is not larger than 20 seconds, and the interval between the first and third events is not larger than 40 secondsTCPConnectionClose. This paper proposes an indexing method that enables to efficiently answer such a query. Unlike the previous methods that rely on inefficient sequential scan methods or data structures not easily supported by DBMSs, the proposed method uses a multi-dimensional spatial index, which is proven to be efficient both in storage and search, to find the answers quickly without false dismissals. Given a sliding window W, the input to a multi-dimensional spatial index is a n-dimensional vector whose i-th element is the interval between the first event of W and the first occurrence of the event type Ei in W. Here, n is the number of event types that can be occurred in the system of interest. The problem of‘dimensionality curse’may happen when n is large. Therefore, we use the dimension selection or event type grouping to avoid this problem. The experimental results reveal that our proposed technique can be a few orders of magnitude faster than the sequential scan and ISO-Depth index methods.hods.

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure (강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험)

  • Kim, Sehoon;Na, Okpin;Kim, Sungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.443-453
    • /
    • 2013
  • The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.