• 제목/요약/키워드: 순차적 레이블링

검색결과 10건 처리시간 0.022초

순차적 레이블링을 이용한 지문 융선 특징 검출 (Ridge Feature Extraction of Fingerprint Using Sequential Labeling)

  • 오재윤;엄재원;최태영
    • 대한전자공학회논문지SP
    • /
    • 제40권3호
    • /
    • pp.217-226
    • /
    • 2003
  • 본 논문에서는 세선화 지문 영상의 순차적 레이블링을 이용하여 위치 이동, 크기 변화 그리고 회전에 무관한 새로운 지문 융선 특징 검출 알고리즘을 제안한다. 제안한 알고리즘은 먼저 지문의 중심점을 지나는 수직선을 이용하여 세선화 지문 영상의 융선을 순차적으로 레이블링 한다. 그리고 레이블링한 개개의 융선들로부터 특징을 검출한다 검출하는 특징은 융선의 종류와 융선에 존재하는 특징점의 융선 각도이다. 이러한 방법을 이용하여 지문 융선의 특징을 검출하면, 지문을 이루고 있는 여러 융선들의 종류를 알 수 있고, 각 융선에 존재하는 특징점의 종류 및 이들의 각도를 알 수 있다. 두 개의 세선화 지문 영상을 이용하여 실험한 결과, 제안하는 알고리즘이 위치 이동, 크기 변화 그리고 회전에 무관한 지문 융선 특징을 검출함을 확인하였다.

기분석사전과 기계학습 방법을 결합한 음절 단위 한국어 품사 태깅 (Syllable-based Korean POS Tagging Based on Combining a Pre-analyzed Dictionary with Machine Learning)

  • 이충희;임준호;임수종;김현기
    • 정보과학회 논문지
    • /
    • 제43권3호
    • /
    • pp.362-369
    • /
    • 2016
  • 본 논문은 음절 단위 한국어 품사 태깅 방법의 성능 개선을 위해 기분석사전과 기계학습 방법을 결합하는 방법을 제안한다. 음절 단위 품사 태깅 방법은 형태소분석을 수행하지 않고 품사 태깅만을 수행하는 방법이며, 순차적 레이블링(Sequence Labeling) 문제로 형태소 태깅 문제를 접근한다. 본 논문에서는 순차적 레이블링 기반 음절 단위 품사 태깅 방법의 전처리 단계로 품사 태깅말뭉치와 국어사전으로부터 구축된 복합명사 기분석사전과 약 1천만 어절의 세종 품사 태깅말뭉치로부터 자동 추출된 어절 사전을 적용함으로써 품사 태깅 성능을 개선시킨다. 성능 평가를 위해서 약 74만 어절의 세종 품사 태깅말 뭉치로부터 67만 어절을 학습 데이터로 사용하고 나머지 7만 4천 어절을 평가셋으로 사용하였다. 기계학습 방법만을 사용한 경우에 96.4%의 어절 정확도를 보였으며, 기분석사전을 결합한 경우에는 99.03%의 어절 정확도를 보여서 2.6%의 성능 개선을 달성하였다. 퀴즈 분야의 평가셋으로 실험한 경우에도 기계학습 엔진은 96.14% 성능을 보인 반면, 하이브리드 엔진은 97.24% 성능을 보여서 제안 방법이 다른 분야에도 효과적임을 확인하였다.

음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정 (Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables)

  • 윤정민;배경만;고영중
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정 (Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables)

  • 윤정민;배경만;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링 (Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables)

  • 안재현;이호경;고영중
    • 한국어정보학회:학술대회논문집
    • /
    • 한국어정보학회 2016년도 제28회 한글및한국어정보처리학술대회
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링 (Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables)

  • 안재현;이호경;고영중
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2016년도 제28회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

다중 축 슬라이싱 및 3 차원 재구성을 통한 갈비뼈 세그멘테이션 (Rib Segmentation via Biaxial Slicing and 3D Reconstruction)

  • 김현성;변규린;고성현;범정현;리덕타이;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.611-614
    • /
    • 2023
  • 갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.

해양사고 예방을 위한 사전학습 언어모델의 순차적 레이블링 기반 복수 인과관계 추출 (Sequence Labeling-based Multiple Causal Relations Extraction using Pre-trained Language Model for Maritime Accident Prevention)

  • 문기영;김도현;양태훈;이상덕
    • 한국안전학회지
    • /
    • 제38권5호
    • /
    • pp.51-57
    • /
    • 2023
  • Numerous studies have been conducted to analyze the causal relationships of maritime accidents using natural language processing techniques. However, when multiple causes and effects are associated with a single accident, the effectiveness of extracting these causal relations diminishes. To address this challenge, we compiled a dataset using verdicts from maritime accident cases in this study, analyzed their causal relations, and applied labeling considering the association information of various causes and effects. In addition, to validate the efficacy of our proposed methodology, we fine-tuned the KoELECTRA Korean language model. The results of our validation process demonstrated the ability of our approach to successfully extract multiple causal relationships from maritime accident cases.

화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘 (Bar Code Location Algorithm Using Pixel Gradient and Labeling)

  • 김승진;정윤수;김봉석;원종운;원철호;조진호;이건일
    • 정보처리학회논문지D
    • /
    • 제10D권7호
    • /
    • pp.1171-1176
    • /
    • 2003
  • 바코드의 기하학적 특징과 레이블링을 이용하여 효율적으로 추출하는 알고리즘을 제안하였다. 네 개의 라인 연산자(line operator)[8]를 이용하여 화소가 가지는 방향을 구한 후, 블록 별로 각 방향에 대한 화소의 누적 히스토그램(histogram)을 구한다. 히스토그램에서 최대값과 최소값의 차가 가장 큰 블록을 바코드 영역의 블록이라고 결정한다. 구해진 블록만을 이용하여 바코드의 중심을 지나가는 직선을 구할 수도 있지만 좀더 정확한 직선을 구하기 위해 바코드 영역에 있는 많은 블록들을 찾는다. 가장 큰 차 값을 이용하여 문턱값을 구하고 블록별로 히스토그램의 최대값과 최소값의 차가 문턱값보다 큰 블록을 바코드의 기하학적(a) 특징을 갖는 블록으로 분류함으로써 블록을 대상으로 영상을 이진화한다. 이진화 한 영상에 대해 레이블링(labeling)[8,9]을 행하여 바코드 영역의 후보 블록들을 결정한다. 후보 블록들의 화소를 이용하여 바코드의 기울기와 중심점을 바코드의 중심점을 구하여 바코드와 수직이고 바코드의 중심을 지나가는 직선을 그을 수 있으며 바코드를 검출 할 수 있다. 수직선이 지나갈 때 화소값을 순차적으로 획득함으로써 바코드가 가지고 있는 정보를 파악한다.

효율적인 순로코드 발생을 위한 고속 한글 주소검색 시스템 개발 (High-Speed Korean Address Searching System for Efficient Delivery Point Code Generation)

  • 김경환;이석구;신미영;남윤석
    • 정보처리학회논문지D
    • /
    • 제8D권3호
    • /
    • pp.273-284
    • /
    • 2001
  • 실제로 사용되는 주소의 분석을 통해 한글주소의 해석방법을 제안하고, 제안한 주소해석 방법을 이용한 주소 검색시스템의 구현에 대하여 서술한다. 주소 상위 및 하위영역의 일치검증을 각각 순차적으로 수행하는 2단계 과정을 통해 최종 배달점에 대한 순로코드를 발생한다. 우편 번호와 주소 상위영역 일치검증 단계에서는 우편버호를 이용하여 주소사전에서 검색된 주소단어와 인식된 문자 후보들과의 비교를 통해 우편 번호를 검증하게 되며, 주소 상위영역과 주소 하위영역이 분리된다. 주소 상위영역 일치검증 과정의 성능향상을 위해 혼동행렬을 제안하고, 주소 인식결과에 혼동행렬을 적용하여 검증 성공률의 향상을 통해 혼동행렬의 유용성을 확인하였다. 주소 하위영역 검증은 번지정보와 건물명 정보를 이용하여 순로코드를 발생하였다. 부분적으로 완성된 광주와 부산지역의 DPF(Delivery Point File)와 레이블링된 데이터를 이용해 분석 가능한 주소에 대해 높은 정확도를 가지고 순로코드를 발생함을 확인할 수 있었다.

  • PDF