• Title/Summary/Keyword: 순차적 레이블링

Search Result 10, Processing Time 0.025 seconds

Ridge Feature Extraction of Fingerprint Using Sequential Labeling (순차적 레이블링을 이용한 지문 융선 특징 검출)

  • 오재윤;엄재원;최태영
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.3
    • /
    • pp.217-226
    • /
    • 2003
  • A novel fingerprint ridge feature extraction using sequential labeling of thinned fingerprint image is proposed, which is invariant to position translation, scaling, and rotation. the proposed algorithm labels ridges of thinned fingerprint image sequentially using vertical line that goes through fingerprint core point. Then, we extract a feature from each labeled ridge and the extraction process is based on the type fo the ridge and a minutiae ridge angle in the ridge. The feature extracted through this process enables us to find out the kind of various minutiae and minutiae angle. As a result of the experiment using two thinned fingerprint images, we finally confirm that proposed algorithm is not related to position translation, scaling, and rotation.

Syllable-based Korean POS Tagging Based on Combining a Pre-analyzed Dictionary with Machine Learning (기분석사전과 기계학습 방법을 결합한 음절 단위 한국어 품사 태깅)

  • Lee, Chung-Hee;Lim, Joon-Ho;Lim, Soojong;Kim, Hyun-Ki
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.362-369
    • /
    • 2016
  • This study is directed toward the design of a hybrid algorithm for syllable-based Korean POS tagging. Previous syllable-based works on Korean POS tagging have relied on a sequence labeling method and mostly used only a machine learning method. We present a new algorithm integrating a machine learning method and a pre-analyzed dictionary. We used a Sejong tagged corpus for training and evaluation. While the machine learning engine achieved eojeol precision of 0.964, the proposed hybrid engine achieved eojeol precision of 0.990. In a Quiz domain test, the machine learning engine and the proposed hybrid engine obtained 0.961 and 0.972, respectively. This result indicates our method to be effective for Korean POS tagging.

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

Korean Semantic Role Labeling Based on Bidirectional LSTM CRFs Using the Semantic Label Distribution of Syllables (음절의 의미역 태그 분포를 이용한 Bidirectional LSTM CRFs 기반의 한국어 의미역 결정)

  • Yoon, Jungmin;Bae, Kyoungman;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.324-329
    • /
    • 2016
  • 의미역 결정은 자연어 문장의 서술어와 그 서술어에 속하는 논항들 사이의 의미관계를 결정하는 것이다. 최근 의미역 결정 연구에는 의미역 말뭉치와 기계학습 알고리즘을 이용한 연구가 주를 이루고 있다. 본 논문에서는 순차적 레이블링 영역에서 좋은 성능을 보이고 있는 Bidirectional LSTM-CRFs 기반으로 음절의 의미역 태그 분포를 고려한 의미역 결정 모델을 제안한다. 제안한 음절의 의미역 태그 분포를 고려한 의미역 결정 모델은 분포가 고려되지 않은 모델에 비해 2.41%p 향상된 66.13%의 의미역 결정 성능을 보였다.

  • PDF

Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables (의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링)

  • An, Jaehyun;Lee, Hokyung;Ko, Youngjoong
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

Korean Dependency Relation Labeling Using Bidirectional LSTM CRFs Based on the Dependency Path and the Dependency Relation Label Distribution of Syllables (의존 경로와 음절단위 의존 관계명 분포 기반의 Bidirectional LSTM CRFs를 이용한 한국어 의존 관계명 레이블링)

  • An, Jaehyun;Lee, Hokyung;Ko, Youngjoong
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.14-19
    • /
    • 2016
  • 본 논문은 문장에서의 어절 간 의존관계가 성립될 때 의존소와 지배소가 어떠한 관계를 가지는지 의존 관계명을 부착하는 모델을 제안한다. 국내에서 한국어 의존구문분석에 관한 연구가 활발히 진행되고 있지만 의존 관계만을 결과로 제시하고 의존 관계명을 제공하지 않는 경우가 많았다. 따라서 본 논문에서는 의존 경로(Dependency Path)와 음절의 의존 관계명 분포를 반영하는 음절 임베딩를 이용한 의존 관계명 부착 모델을 제안한다. 문장에서 나올 수 있는 최적의 입력 열인 의존 경로(Dependency Path)를 순차 레이블링에서 좋은 성능을 나타내고 있는 bidirectional LSTM-CRFs의 입력 값으로 사용하여 의존 관계명을 결정한다. 제안된 기법은 자질에 대한 많은 노력 없이 의존 경로에 따라 어절 및 음절 단어표상(word embedding)만을 사용하여 순차적으로 의존 관계명을 부착한다. 의존 경로를 사용하지 않고 전체 문장의 어절 순서를 바탕으로 자질을 추출하여 CRFs로 분석한 기존 모델보다 의존 경로를 사용했을 때 4.1%p의 성능향상을 얻었으며, 의존 관계명 분포를 반영하는 음절 임베딩을 사용한 bidirectional LSTM-CRFs는 의존 관계명 부착에 최고의 성능인 96.01%(5.21%p 개선)를 내었다.

  • PDF

Rib Segmentation via Biaxial Slicing and 3D Reconstruction (다중 축 슬라이싱 및 3 차원 재구성을 통한 갈비뼈 세그멘테이션)

  • Hyunsung Kim;Gyurin Byun;Seonghyeon Ko;Junghyun Bum;Duc-Tai Le;Hyunseung Choo
    • Annual Conference of KIPS
    • /
    • 2023.11a
    • /
    • pp.611-614
    • /
    • 2023
  • 갈비뼈 병변 진단 과정은 방사선 전문의가 CT 스캐너를 통해 생성된 2 차원 CT 이미지들을 해석하며 진행된다. 병변의 위치를 파악하고 정확한 진단을 내리기 위해 수백장의 2차원 CT 이미지들이 세밀하게 검토되며 갈비뼈를 분류한다. 본 연구는 이런 노동 집약적 작업의 문제점을 개선시키기 위해 Biaxial Rib Segmentation(BARS)을 제안한다. BARS 는 흉부 CT 볼륨의 관상면과 수평면으로 구성된 2 차원 이미지들을 U-Net 모델에 학습한다. 모델이 산출한 세그멘테이션 마스크들의 조합은 서로 다른 평면의 공간 정보를 보완하며 3 차원 갈비뼈 볼륨을 재건한다. BARS 의 성능은 DSC, Recall, Precision 지표를 사용해 평가하며, DSC 90.29%, Recall 89.74%, Precision 90.72%를 보인다. 향후에는 이를 기반으로 순차적 갈비뼈 레이블링 연구를 진행할 계획이다.

Sequence Labeling-based Multiple Causal Relations Extraction using Pre-trained Language Model for Maritime Accident Prevention (해양사고 예방을 위한 사전학습 언어모델의 순차적 레이블링 기반 복수 인과관계 추출)

  • Ki-Yeong Moon;Do-Hyun Kim;Tae-Hoon Yang;Sang-Duck Lee
    • Journal of the Korean Society of Safety
    • /
    • v.38 no.5
    • /
    • pp.51-57
    • /
    • 2023
  • Numerous studies have been conducted to analyze the causal relationships of maritime accidents using natural language processing techniques. However, when multiple causes and effects are associated with a single accident, the effectiveness of extracting these causal relations diminishes. To address this challenge, we compiled a dataset using verdicts from maritime accident cases in this study, analyzed their causal relations, and applied labeling considering the association information of various causes and effects. In addition, to validate the efficacy of our proposed methodology, we fine-tuned the KoELECTRA Korean language model. The results of our validation process demonstrated the ability of our approach to successfully extract multiple causal relationships from maritime accident cases.

Bar Code Location Algorithm Using Pixel Gradient and Labeling (화소의 기울기와 레이블링을 이용한 효율적인 바코드 검출 알고리즘)

  • Kim, Seung-Jin;Jung, Yoon-Su;Kim, Bong-Seok;Won, Jong-Un;Won, Chul-Ho;Cho, Jin-Ho;Lee, Kuhn-Il
    • The KIPS Transactions:PartD
    • /
    • v.10D no.7
    • /
    • pp.1171-1176
    • /
    • 2003
  • In this paper, we propose an effective bar code detection algorithm using the feature analysis and the labeling. After computing the direction of pixels using four line operators, we obtain the histogram about the direction of pixels by a block unit. We calculate the difference between the maximum value and the minimum value of the histogram and consider the block that have the largest difference value as the block of the bar code region. We get the line passing by the bar code region with the selected block but detect blocks of interest to get the more accurate line. The largest difference value is used to decide the threshold value to obtain the binary image. After obtaining a binary image, we do the labeling about the binary image. Therefore, we find blocks of interest in the bar code region. We calculate the gradient and the center of the bar code with blocks of interest, and then get the line passing by the bar code and detect the bar code. As we obtain the gray level of the line passing by the bar code, we grasp the information of the bar code.

High-Speed Korean Address Searching System for Efficient Delivery Point Code Generation (효율적인 순로코드 발생을 위한 고속 한글 주소검색 시스템 개발)

  • Kim, Gyeong-Hwan;Lee, Seok-Goo;Shin, Mi-Young;Nam, Yun-Seok
    • The KIPS Transactions:PartD
    • /
    • v.8D no.3
    • /
    • pp.273-284
    • /
    • 2001
  • A systematic approach for interpreting Korean addresses based on postal code is presented in this paper. The implementation is focused on producing the final delivery point code from various types of address recognized. There are two stages in the address interpretation : 1) agreement verification between the recognized postal code and upper part of the address and 2) analysis of lower part of the address. In the agreement verification procedure, the recognized postal code is used as the key to the address dictionary and each of the retrieved addresses is compared with the words in the recognized address. As the result, the boundary between the upper part and the lower part is located. The confusion matrix, which is introduced to correct possible mis-recognized characters, is applied to improve the performance of the process. In the procedure for interpreting the lower part address, a delivery code is assigned using the house number and/or the building name. Several rules for the interpretation have been developed based on the real addresses collected. Experiments have been performed to evaluate the proposed approach using addresses collected from Kwangju and Pusan areas.

  • PDF