• Title/Summary/Keyword: 순수 냉각수시스템

Search Result 4, Processing Time 0.017 seconds

The Test Result of Cooling Water System for KSTAR TF MPS (KSTAR장치의 TF MPS 냉각수시스템 시운전 결과)

  • Kim, Young-Jin;Kim, Sang-Tae;Im, Dong-Seok;Jung, Nam-Yong;Kim, Dong-Jin;Choi, Jae-Hoon;Lee, Dong-Keun;Kim, Yang-Su;Park, Joo-Shik;Lee, Yong-Woon
    • Proceedings of the SAREK Conference
    • /
    • 2008.11a
    • /
    • pp.413-418
    • /
    • 2008
  • The toroidal field magnet power supply (TF MPS) for the KSTAR was constructed in August, 2007 and started the operation for the commissioning in March, 2008. The main role of the TF MPS is to supply the electric power to the TF magnet of the KSTAR. The water cooling components of the TF MPS are 16 stacks, busbar of 70 meters. For the cooling of the TF MPS, the D I water cooling system was designed and installed. The water cooling system consists of several pumps, heat exchangers, D I water polishing system and so on. The water cooling system for the TF MPS was tested under the 15 kA current charging condition. In this paper be discussed about the system performance and other parameters.

  • PDF

A Numerical Study on Urea Melting Phenomena with Coolant and Electric Heaters (냉각수 및 전기히터를 이용한 우레아 해동 특성에 관한 수치적 연구)

  • Lee, Seung-Yeop;Kim, Man-Young;Park, Yun-Beom;Lee, Gyo-Woo;Kang, Hee-Young;Baek, Byung-Joon
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.402-405
    • /
    • 2011
  • 디젤엔진에서 발생되는 PM과 $NO_X$는 강화되는 배기규제의 주요 저감대상으로서 이의 저감을 위한 다양한 후처리장치가 개발되고 있다. 이중 Urea-SCR은 $NO_X$의 전환율이 높고 연비에 미치는 영향이 작기 때문에 $NO_X$저감을 위한 최선의 장치로 인식되고 있다. 하지만, 우레아 수용액의 물성치 특성으로 인하여 동절기 $-20^{\circ}C$이하로 내려가는 지역에서 동결되는 문제점을 해결해야한다. 따라서 이러한 우레아 저장탱크에 해동 시스템을 적용하여 시동초기 우레아를 적정 시간내에 안정적으로 공급가능한 기술의 확보가 필요하다. 본 연구에서는 요소수 저장탱크 내부에 냉각수 순환 가열방식(CH)과 전기 가열방식(EH)을 이용하여 동결된 요소수의 해동현상에 대한 3차원 비정상상태 수치 해석을 수행하였다. 이를 통하여 해동 과정 중 나타난 액상분율, 온도영역 그리고 자연대류를 분석하여 각 가열 방식에 대한 해동특성을 비교하였으며 순수 갈륨 융해 실험 결과값과 수치 해석 결과값를 통하여 수치 해석 방법을 검증하였다. 결론적으로 1,000ml의 우레아 수용액이 확보되기까지의 시간은 CH의 경우, 275s, 그리고 EH의 경우, 230s임을 알 수 있었다.

  • PDF

Development of a Fuel Cell System Model for a Small Ship (소형 선박용 연료전지 시스템 모델 개발)

  • Bang, Eun-Shin;Kim, Young-Min;Kim, Myoung-Hwan;Park, Sang-Kyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.569-575
    • /
    • 2020
  • In this study, a fuel cell system model for ship power was developed and verified by comparing the experimental results obtained by supplying pure oxygen. To verify the proposed model, the fuel cell output characteristics when oxygen was supplied were compared with those when air was supplied using an air compressor. In addition, the effect of the change in the thermal properties of the fuel cell system on the output of the stack was examined. Within the experimental range of this study, when pure oxygen was supplied as the cathode supply gas, the calculated and experimental voltages and outputs obtained through modeling were almost the same over the entire load range. When air was supplied instead of oxygen for the cathode supply at a constant load of 560 A, each stack voltage was approximately 14 V, the stack output was approximately 8 kW, and the stack efficiency was approximately 3 %. It was confirmed that the overall system efficiency was reduced by approximately 8 %. Among the thermal properties examined in this study, the heat transfer coefficient of the coolant to the stack was found to have the greatest effect on the output of the stack.

Remote Monitoring Panel and Control System for Chemical, Biological and Radiological Facilities (화생방 방호시설을 위한 원격감시 패널 및 제어시스템)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.464-469
    • /
    • 2019
  • A remote monitoring panel and control system was developed to control various valves and access control chambers, including gas shutoff valves used in CBR(Chemical, Biological and Radiological) facilities. The remote monitoring panel consisted of a main panel installed in the NBC (Nuclear, Biological and Chemical) control room and auxiliary panel installed in the clean room, and the size was divided into pure control and control including CCTV. This system can be monitored and controlled remotely according to the situation where an explosion door and gas barrier door can occur during war and during normal times. This system is divided into normal mode and war mode. In particular, it periodically senses the operation status of various valves, sensors, and filters in the CBR facilities to determine if each apparatus and equipment is in normal operation, and remotely alerts situation workers when repair or replacement is necessary. Damage due to the abnormal operation of each device in the situation can be prevented. This enables control of the blower, supply and exhaust damper, emergency generator, and coolant pump according to the state of shutoff valve and positive pressure valve in the occurrence of NBC, and prevents damage caused by abrupt inflow of conventional weapons and nuclear explosions.