• Title/Summary/Keyword: 수

Search Result 352,971, Processing Time 0.281 seconds

Impacts of Topography on Microbial Community from Upland Soils in Gyeongnam Province (경남지역 밭 토양 지형이 미생물 군집에 미치는 영향)

  • Lee, Young-Han;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.485-491
    • /
    • 2011
  • The present study evaluated the soil microbial communities by fatty acid methyl ester (FAME) in upland soils at 25 sites in Gyeongnam Province. The total bacteria content was $143nmol\;g^{-1}$ for in inclined piedmont, $75nmol\;g^{-1}$ for fan and valley, $49nmol\;g^{-1}$ for hill areas, and $44nmol\;g^{-1}$ for riversider plain. The fungi content was 2.4 times higher in sandy loam than $21nmol\;g^{-1}$ in silt loam (p<0.01). In addition, inclined piedmont soils had a significantly higher ratio of monounsaturated fatty acids to saturated fatty acids compared with fan and valley soils (p<0.05). The communities of total bacteria and arbuscular mycorrhizal fungi in the inclined piedmont soils were significantly higher than those in the fan and valley soils and in the riversider plain soils (p<0.05), whereas the community of fungi was significantly lower (p<0.05). In principal component analyses of soil microbial communities, our findings showed that inclined piedmont was positive relationship with total bacteria and actinomycetes in upland soils.

Impact of Compost Application on Improvement of Rice Productivity and Quality in Reclaimed Soil (간척지 토양에서 퇴비처리가 벼의 생산 및 품질개선에 미치는 영향)

  • Moon, Young-Hun;Kwon, Young-Rip;Ahn, Byung-Koo;Kim, Dae-Hyang;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.808-813
    • /
    • 2011
  • This study was conducted to reduce the dependability of farmers on chemical fertilizers for rice cultivation. Soil chemical and biological properties were monitored before experiment and at the time of harvesting. The results showed that EC, available $SiO_2$, and exchangeable $Ca^{2+}$ were decreased at the time of harvesting while pH, OM, and exchangeable $K^+$ and $Mg^{2+}$ were remain unchanged, compared with soil before experiment. Population of aerobic bacteria, Bacillus sp., and fungi were also increased at the time of harvesting in the paddy field, compared with before fertilization, in the treatment of 50% soil-testing fertilizer+ 50% compost. Concentrations of N, P, and K in rice leaves increased with the fertilizers application, maximum increase was recorded in 50% soil-testing fertilizer+ 50% compost. Non-significant difference was observed in the morphological parameters of rice among the treatments. The chlorophyll contents of rice leaf increased in a similar fashion up to 60 days, thereafter, sharp decrease was observed in all the treatments. Maximum yield (per 10a) was recorded in the field treated with 50% soil-testing fertilizer+ 50% compost followed by standard applied fertilizer, 70% soil-testing fertilizer+ 30% compost, soil-testing fertilizer and unfertilized plot. Amylose content showed non-significant difference within the treatments. Protein content increased with the use of fertilizers and best protein content was recorded in the treatment of 50% soil-testing fertilizer+ 50% compost. It was concluded that the amount of the chemical fertilizer used was directly proportional to the protein content of rice grain. However, the palatability of rice grown in unfertilized field was better than the treatments but minimum yield was obtained. Hence, the treatment of 50% soil-testing fertilizer+ 50% compost, was the best among the fertilizer combinations for rice cultivation as supported by the yield, protein and palatability index.

Effect of Mixed Cultivation with Green Manure Crops and Liquid Pig Manure on Rice Growth (녹비작물과 돈분액비의 혼용재배가 벼 생육에 미치는 효과)

  • Kang, Se-Won;Seo, Dong-Cheol;Han, Jong-Hak;Seo, Young-Jin;Lee, Sang-Gyu;Choi, Ik-Won;Jeon, Weon-Tai;Kang, Ui-Gum;Heo, Jong-Soo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1095-1102
    • /
    • 2011
  • The effect of mixed cultivation with green manure crops and liquid pig manure on rice growth was investigated. Field experiment in site 1 (Astragalus sinicus L.) and site 2 (Lolium multiflorum Lam.) were designed with control (non-green manure crop), PLM 100 (non-green manure crop + liquid pig manure 100%), A(L)PLM 0 (green manure crop + PLM 0%), A(L)PLM 50 (green manure crop + PLM 50%), A(L)PLM 75 (green manure crop + PLM 75%), and A(L)PLM 100 (green manure crop + PLM 100%). The results of 1,000 grain in rice plant were in the order of APLM 100 ${\geqq}$ APLM 75 ${\fallingdotseq}$ PLM 100 ${\fallingdotseq}$ APLM 0 ${\fallingdotseq}$ APLM 50 ${\fallingdotseq}$ control for site 1 and LPLM 100 ${\geqq}$ LPLM 75 = LPLM 50 = PLM 100 ${\geqq}$ LPLM 0 ${\fallingdotseq}$ control for site 2. The yields of rice in site 1 and site 2 were $636kg\;10a^{-1}$ (increasing yield 10%) for APLM 100 and $775kg\;10a^{-1}$ (increasing yield 12%) for LPLM 100, respectively.

Evaluation of Aquatic Ecological Characteristics in Sinpyongcheon Constructed Wetlands for Treating Non-point Source Pollution (비점오염원 저감을 위한 신평천 인공습지의 수생태학적 특성 평가)

  • Seo, Dong-Cheol;Kang, Se-Won;Lim, Byung-Jin;Park, Jong-Hwan;Kim, Kap-Soon;Lee, Jun-Bae;Kim, Hyun-Ook;Heo, Jong-Soo;Chang, Nam-Ik;Seong, Hwan-Hoo;Cho, Ju-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.400-407
    • /
    • 2011
  • To evaluate the aquatic ecological characteristics in Sinpyongcheon constructed wetlands for treating nonpoint source pollution, the removal rates of nutrients in water, the total amounts of T-N and T-P uptakes by water plants, and chemical characteristics of T-N and T-P in sediment were investigated. The concentrations of BOD, COD, SS, T-N and T-P in inflow were 0.07~1.47, 0.60~2.65, 0.50~4.60, 1.38~6.26 and $0.08{\sim}0.32mg\;L^{-1}$, respectively. The removal rates of BOD, COD, SS, T-N, and T-P were 14%, 6%, 18%, 24%, and 10%, respectively. The maximum amount of T-N uptake by water plants in August was $813mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $1,172mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. The maximum amount of T-P uptake by water plants in August was $247mg\;plant^{-1}$ for Phragmites communis TRIV in $2^{nd}$ bed, $359mg\;plant^{-1}$ for Typha orientalis PRESL in $3^{rd}$ bed, respectively. Organic matter, T-N, and T-P contents in sediments were high in the order of $1^{st}$ bed > $2^{nd}$ bed > $3^{rd}$ bed. Microbial biomass C/N/P ratios in sediments in $1^{st}$, $2^{nd}$, and $3^{rd}$ were 78~110/3~6/1, 73~204/1~6/1, and 106~169/1~6/1, respectively.

Assessment of Nutrient Losses in Different Slope Highland Soils Amended with Livestock Manure Compost (경사도와 축분 부산물비료 시용에 따른 고랭지 밭의 양분 유실량)

  • Joo, Jin-Ho;Lee, Seung-Been
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.361-367
    • /
    • 2011
  • Soil fertility of alpine soils in Gangwon-Do has been deteriorating because of heavy input of chemical fertilizers for intensive crop production. To reduce application of chemical fertilizers, use of livestock manure compost in alpine soils increases consistently. Soil loss and runoff due to heavy rainfall in alpine area cause nutrient loss from soil, and subsequently pollute stream water. Therefore, the objective of this study was to assess nutrient efficiency and loss in Chinese cabbage cultivated soil with different livestock manure composts in several slopes. As control, chemical fertilizer was applied at the rate of $250-78-168kg\;ha^{-1}$ for $N-P_2O_5-K_2O$. Each pig-and chicken manure compost was applied at the rate of $10MT\;ha^{-1}$. Chemical fertilizer + chicken manure compost was applied as same rate. Four treatments was practiced in 5, 20, and 35% filed slopes, respectively. We monitored the amounts of soil loss and runoff water after rainfalls, and we also analyzed the contents of nutrients in soil and runoff water through lysimeter installed in alpine agricultural institute in Gangwon-Do. T-N loss due to soil loss was much greater with increasing filed slops rather than different fertilizer treatments. T-N loss has positive relationship with field slopes, which showing soil loss (MT/ha) = 1.66 slopes (%) - 3.5 ($r^2$ = 0.99). Available phosphate and exchangeable cations showed similar tendency with increasing slopes. T-N and T-P losses caused by runoff water were highest in chemical fertilizer (NPK) + chicken manure compost treated plot, while lowest in chemical fertilizer treatment. T-N contents (2.13, 1.95%) in chinese cabbage treated either pig and chicken manure composts compared to that (2.65%) of chemical fertilizer were significantly less. This could be resulted from much greater T-N loss in soil treated with pig and chicken manure composts.

Long-term Monitoring Study of Soil Chemical Contents and Quality in Paddy Fields (논토양의 화학성과 질의 장기 변동)

  • Kim, M.S.;Kim, W.I.;Lee, J.S.;Lee, G.J.;Jo, G.L.;Ahn, M.S.;Choi, S.C.;Kim, H.J.;Kim, Y.S.;Choi, M.T.;Moon, Y.H.;Ahn, B.K.;Kim, H.W.;Seo, Y.J.;Lee, Y.H.;Hwang, J.J.;Kim, Y.H.;Ha, S.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.930-936
    • /
    • 2010
  • There is very important to investigate long-term trend of soil chemical properties and quality index for sustainable agriculture and production of agricultural safety products. Monitoring on soil chemical properties in paddy soils was conducted as one cycle with 4 years from 1999 to 2007. Paddy soil samples were taken from 4,007, 1,970, 2,070 sites in 1999, 2003 and 2007, respectively. With these data, soil quality index (SQI) was evaluated by method that Yoon et al suggested in 2004. Chemical properties of paddy soils were 5.8 for pH, 24 g $kg^{-1}$ for organic matter, 132 mg $kg^{-1}$ for available phosphate, 0.29 cmol_c\; kg-1 for exchangeable potassium, 4.7 $cmol_c\;kg^{-1}$ for exchangeable calcium, 1.3 $cmol_c\;kg^{-1}$ for exchangeable magnesium and 126 mg $kg^{-1}$ for available silicate in 2007. Long-term change was shown that pH has increased gradually whereas exchangeable potassium has decreased. However, reasonably large changes were found. Exchangeable calcium and available silicate level in 1999 was 4.0 $cmol_c\;kg^{-1}$, 86 mg $kg^{-1}$, but had risen to 4.7 $cmol_c\;kg^{-1}$, 126 mg $kg^{-1}$ in 2007, respectively. The change of paddy soils quality index was increased gradually and increasement of silicate quality index was higher than other quality indicators.

Taxonomical Classification of Jangho Series (장호통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Sonn, Yeon-Kyu;Zhang, Yong-Seon;Park, Chan-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.330-335
    • /
    • 2009
  • This study was conducted to reclassify Jangho series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Jangho series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Jangho series has very dark grayish brown (10YR 3/2) gravelly silt loam A horizon (0~14 cm), very dark brown (7.5YR 3/2) silty clay BAt horizon (14~31 cm), dark brown (7.5YR 3/4) silty clay Bt1 horizon (31~58 cm), brown (7.5YR 4/4) silty clay Bt2 horizon (58~90 cm), and brown (7.5YR 4/4) clay Bt3 (90~120 cm) horizon. That is developed on river terraces. The typifying pedon has an argillic horizon from a depth of 14 to more than 120 cm and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol. The typifying pedon has 0.9 % or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult, which is reported for the first time in Korea. That does not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and keys out as Haplohumult. Also that meets the requirements of Typic Haplohumult. That has 35 % or more clay at the particle-size control section, and has mesic soil temperature regime. Jangho series can be classified as fine, mixed, mesic family of Typic Haplohumults, not as fine silty over clayey, mixed, mesic family of Mollic Hapludalfs.

Effect of Organic Substrates Mixture Ratio on 2-year-old Highbush Blueberry Growth and Soil Chemical Properties (유기자재 종류별 혼합비율이 2년생 하이부시 블루베리의 유목 생육과 토양환경에 미치는 영향)

  • Kim, Hong-Lim;Kim, Hyoung-Deug;Kim, Jin-Gook;Kwack, Yong-Bum;Choi, Young-Hah
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.858-863
    • /
    • 2010
  • The blueberry farming requires the soil condition of well-drainage, pH of 4.5 to 5.2, and high in organic matters for stable growth and development. Most of soil type of cultivated land in Korea, however, belongs to alkaline soils with low organic matter content and poor drainage. Therefore, the blueberry farmers use peat moss heavily to improve the soil condition, but the guideline on the effective and economic ratio of peat moss is not established yet. This study was performed to determine the cost effective peat moss ratio for amending soils, and to investigate the feasibility of using sawdust and coco peat as soil amendments. Peat moss, coco peat and sawdust are mixed with soil at the ratio of 0, 12.5, 50 and 100% (v/v). Among 3 organic materials with various mixture ratios, the pH of soil was the lowest in 100% peat moss and sawdust mixtures (pH 3.67 and pH 3.73, respectively), followed by pH 5.30 at 50% peat moss. The soil organic matter content are directly proportional to the mixture ratios in all three organic materials and the same trend was observed in the variation of content of exchangeable potassium in the coco peat treatments. On the contrary, the content of available phosphate, exchangeable calcium and magnesium decreased with increasing the ratio of organic materials. The nitrogen content in the leaves decreased as increasing the ratio of peat moss and coco peat in soil, but not of sawdust. The content of phosphate decreased but potassium increased as the ratio of sawdust and coco peat increased. There was no clear difference in the contents of magnesium and calcium among 3 organic materials. The plant height, stem diameter and dry weight of blueberry plants were the highest in 50 % peat moss, followed by 12.5% peat moss and 12.5% coco peat. The plants in 100% peat moss showed very poor growth. It can be concluded that peatmoss, when applied and managed appropriately, will be a good material for improving soil condition as well as securing desirable growth for blueberry. Upon coupling economic aspect, the optimum mixing ratio of peatmoss for blueberry farming is approximately 25-50%.

Effect of Different Levels of Applications of Illite on the Growth of Red Pepper (Capsicum annuum L.) in Bed Soil (상토에서 일라이트의 혼합비율에 따른 고추 육묘시 생육효과)

  • Lee, Seok-Eon;Kim, Hong-Ki;Kwon, Sang-Moon;Kim, Hee-Jung;Yoo, Ri-Bi;Baek, Ki-Tae;Lee, Moon-Soon;Woo, Sun-Hee;Park, Man;Chung, Keun-Yook
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.852-857
    • /
    • 2010
  • This study was performed to explore the effect of the clay mineral illite on the improvement of bed soil and plant growth. Red pepper (Capsicum annuum L.) was used as a model vegetable crop. The experiment was performed during the whole six weeks in the glass house of the Chungbuk National University. Its seedlings were cultivated in the bed soil normally used for horticultural purpose. Of the seedlings cultured, the healthy and regular size of seed were selected and cultivated in the pots. They were treated with two forms of illite, particulate (PA) and powder (PW), at the following application rates: standard application[P1 (PA1, PW1), 1:20 (w/w)], two times[P2 (PA2, PW2), 1:10 (w/w)], and four times[P4 (PA4, PW4), 1:5 (w/w)] of standard application. Untreatment (P0) was used as a control pot. At six weeks of cultivation, their growth lengths were correspondingly increased as the application rate was increased ranging from P0, P1, P2, and to P4. Their growth length was a little greater on the application of powder illite (PW) than on the particulate illite (PA). Based on the plant analysis for the root, leaf, stem of red pepper, the uptake amounts of K, Ca, and Mg, were correspondingly increased, as the application rate was increased ranging from P0, P1, P2, and to P4, respectively. At the same application rate, their amounts taken up in the respective parts were higher on the application of PW illite than on the PA one. Especially the amounts of Ca and Mg were higher in the stem, leaf than root. Consequently, it appears that the illite treatment, especially, PW form of illite, enhance the growth of red pepper in the glass house during the whole six weeks of experiment.

Taxonomical Classification of Yongdang Series (용당통의 분류)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.5
    • /
    • pp.393-398
    • /
    • 2009
  • This study was conducted to reclassify Yongdang series based on the second edition of Soil Taxonomy : A Basic System of Soil Classification for Making and Interpreting Soil Surveys. Morphological properties of typifying pedon of Yongdang series were investigated and physico-chemical properties were analyzed according to Soil Survey Laboratory Methods Manual. The typifying pedon of Yongdang series has dark reddish brown (5YR 2/3) silt loam Ap horizon (0~14 cm), dark brown (7.5YR 2/3) silt loam BA horizon (14~32 cm), dark brown (7.5YR 2/3) clay loam Bt horizon (32~57 cm), dark yellowish brown (10YR 4/6) silty clay loam Btx1 horizon (57~110 cm), and dark yellowish brown (10YR 4/6) silty clay loam Btx2 horizon(more than 110 cm). That occurs on gently sloping lava plain and is derived from baslt materials. The typifying pedon has an argillic horizon from a depth of 32 to more than 110 cm and a fragipan from a depth of 57 to more than 110 cm. That has a base saturation (sum of cations) of 35% or more at 75 cm below the upper boundary of the fragipan. That can be classified as Alfisol, not as Inceptisol. The typifying pedon has udic soil moisture regime, and can be classified as Udalf. That has a fragipan with an upper boundary within 100 cm of the mineral soil surface, and keys out as Fragiudalf. Also that meets the requirements of Typic Fragiudalf. That has 18% to 35% clay at the particle-size control section, and has thermic soil temperature regime. Yongdang series can be classified as fine loamy, mixed, thermic family of Typic Fragiudalfs, not as fine loamy, mixed, thermic family of Aquic Eutrudepts.