• Title/Summary/Keyword: 수확량 모형

Search Result 41, Processing Time 0.016 seconds

Development for Fishing Gear and Method of the Non-Float Midwater Pair Trawl Net (II) - Opening Efficiency of the Model Net according to Front Weight and Wing-end Weight - (무부자 쌍끌이 중층망 어구어법의 개발 (II) - 추와 날개끝 추의 무게에 따른 모형어구의 전개성능 -)

  • 유제범;이주희;이춘우;권병국;김정문
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.3
    • /
    • pp.189-196
    • /
    • 2003
  • In this study, the vertical opening of the non-float midwater pair trawl net was maintained by controlling the length of upper warp. This was because the head rope was able to be kept linearly and the working depth was not nearly as changed with the variation of flow speed as former experiments in this series of studies have demonstrated. We confirmed that the opening efficiency of the non-float midwater pair trawl net was able to be developed according to the increase in front weight and wing-end weight. In this study, we described the opening efficiency of the non-float midwater pair trawl net according to the variation of front weight and wing-end weight obtained by model experiment in circulation water channel. We compared the opening efficiency of the proto type with that of the non-float type. The results obtained can be summarized as follows:1. The hydrodynamic resistance was almost increased linearly in proportion to the flow speed and was increased in accordance with the increase in front weight and wing-end weight. The increasing rate of hydrodynamic resistance was displayed as an increasing tendency in accordance with the increase in flow speed. 2. The net height of the non-float type was almost decreased linearly in accordance with the increase in flow speed. As the reduced rate of the net height of the non-float type was smaller than that of the net height of the proto type against increase of flow speed, the net height of the non-float type was bigger than that of the proto type over 4.0 knot. The net width of the non-float type was about 10 m bigger than that of the proto type and the change rate of net width varied by no more than 2 m according to the variation of the front weight and wing-end weight. 3. The mouth area of the non-float type was maximized at 1.75 ton of the front weight and 1.11 ton of the wing-end weight, and was smaller than that of the proto type at 2.0∼3.0 knot, but was bigger than that of the proto type at 4.0∼5.0 knot. 4. The filtering volume was maximized at 3.0 knot in the proto type and at 4.0 knot in the non-float type. The optimal front weight was 1.40 ton.