• Title/Summary/Keyword: 수학 지도

Search Result 4,458, Processing Time 0.028 seconds

학교수학에서의 정당화 지도의 필요성 및 가능성에 관한 연구

  • 신현용
    • Communications of the Korean Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.585-599
    • /
    • 2004
  • 본 연구에서는 학교수학에서 증명지도의 문제점을 정당화의 측면에서 분석하고, 정당화의 한 방법으로서 확률론적 정당화를 제시하며, 학교수학에서 정당화 지도의 교육적 가치, 정당화 지도의 방향, 정당화 지도의 예와 지도 방법에 대해 논의한다. 이러한 논의에 근거하여 학교수학에서의 정당화 지도의 필요성 및 가능성에 관하여 살펴본다. 본 연구에서 '증명'은 고전적인 의미에서의 증명, 즉 엄밀한(rigorous) 증명, 수학적(mathematical) 증명이고, '정당화'는 기존의 수학적 증명 개념은 물론, 다양한 논증 기법을 포함하는 넓은 의미이다.

초등수학에서의 수학적 패턴 지도

  • 김상미;신인선
    • Education of Primary School Mathematics
    • /
    • v.1 no.1
    • /
    • pp.3-22
    • /
    • 1997
  • 본 연구는 첫째로는 수학교육에서 패턴이 강조되는 이론적 근거를 찾고자 역사적 맥락에서 수학의 성격변화를 탐색하였다. 수학의 성격 변화를 통하여 수학은 수의 탐구, 기하의 탐구, 운동ㆍ변화ㆍ공간의 탐구, 수학 연구의 도구에 대한 탐구로 그 영역을 점차 확대하여 왔으며, '수학은 패턴의 과학이다'라는 정의는 수학이 폭넓어짐에 따라 수학이 무엇인가에 대한 수학의 본성에 접근하는 논의라고 할 수 있다. 이러한 수학에 대한 새로운 관점은 수학교육의 새로운 방향 모색에 시사하는 바를 살펴보고, 특히 수학교실의 변화에 따른 패턴의 강조를 살펴보았다. 둘째로는 수학적 패턴을 밝힘과 동시에 수학 교육에서 수학적 패턴 분석의 틀을 마련하고자 수학적 패턴의 유형화를 시도하였다. 패턴의 속성에 따른 유형화와 패턴의 생성 방식에 따른 유형화를 통하여 수학적 패턴의 유형을 마련하였다. 초등학교 수학에서 다루어지는 패턴은 어떠한 것인가를 현행 4학년 수학교과서 및 익힘책에 제한하여 유형화한 틀로서 조사 분석하였다. 셋째로는 수학적 패턴에 관한 지도 방안의 모색으로서, 지도의 기본 방향을 설정하고 수학적 패턴에 관한 교수 전략을 마련하였다. 교수전략은 크게 패턴에서의 규칙 찾기, 패턴을 변형ㆍ확장하기, 자신의 새로운 패턴 만들기, 패턴을 수학적으로 설명하기로 나누고, 각각에 3-4개의 세부 전략과 세부 전략에 따른 예를 제시하였다.

  • PDF

A Study of Teaching Methods Using Metaphor in Mathematics (은유를 활용한 수학 학습 지도 방안 연구)

  • Kim, Ji-Youn
    • School Mathematics
    • /
    • v.13 no.4
    • /
    • pp.563-580
    • /
    • 2011
  • This study is centered on the application of metaphor theory to math education from the cognitive-linguistic view. This study, at first, introduced what metaphor is, and looked into it from the math-educational view. Furthermore, on the basis of that, this study examined the significance of metaphor to math education, and dealt with its relevance to math education, focusing on the functions that metaphor has. This study says that metaphor has the function of explanation, elaboration and representation. In addition, this study examplifies that using metaphor can be an effective math learning strategy for mathematical concept explanation, mathematical connection and mathematical representation learning.

  • PDF

Students' Learning of Geometry through Freudenthal's Mathematizaton (수학화에 의한 도형지도에서 학생의 학습발달 과정 연구)

  • Go, Sang-Suk;Jang, Deok-Im
    • Communications of Mathematical Education
    • /
    • v.18 no.2 s.19
    • /
    • pp.427-440
    • /
    • 2004
  • Freudenthal의 수학화 이론에 대한 지금까지의 대부분의 연구는 이론의 탐색에 집중하고 이에 따른 학습 지도 방안과 자료개발에만 역점을 두었던 것이 그 한계점으로 지적되어져 왔다. 이에 본 연구자는 실제 이 이론이 어떻게 학습 현장에 적용될 수 있는지에 대해 첫째, Freudenthal의 수학화에 의한 도형 지도에서 학생이 어떻게 수학화를 이루어 가는지를 조사하였고, 둘째, 학습의 주체자인 학생들의 능동적인 활동을 강조한 수학화 과정에서 교수의 주체자인 교사는 학생들의 수학화가 원만히 이루어지게 하기 위하여 어떤 역할을 수행하게 되는지를 중학교 1학년 학생을 대상으로 사례연구를 실시하여 조사하였다.

  • PDF

Development of the Diagnostic Worksheet for Mathematics Academic Counseling (수학학습 상담을 위한 진단 검사지 개발 연구)

  • Ko, Ho Kyoung;Yang, Kil-seok;Lee, Hwan Chul
    • Communications of Mathematical Education
    • /
    • v.29 no.4
    • /
    • pp.723-743
    • /
    • 2015
  • In this research, The objective of the present study was to develop a preliminary diagnostic worksheet for use in consultations for learning mathematics. In order to achieve this, the worksheet was constructed with questions designed to assess the students. Through standardization, diagnostic worksheets for primary school students in grades 5 and 6 and secondary school students in grades 7 and 8 were produced. The diagnostic worksheet was divided into three sections, consisting of the psychology of learning mathematics in section 1, the methodology in learning mathematics in section 2, and personal preferences in learning mathematics in section 3. The psychology of learning mathematics was composed of questions on factors such as, "confidence in math learning ability," "math anxiety," and "attitude in learning mathematics." Moreover, factors in methodology in learning mathematics were "self-management in learning mathematics" and "math learning strategies." Those for personal preferences in learning mathematics asked about "motivation" and "preferences" with questions about "math learning habits" and "management methods for learning math." This diagnostic worksheet can be used as basic material in consulting students on learning mathematics.

Mathematics Teachers' Conceptions of Proof and Proof-Instruction (수학 교사의 증명과 증명 지도에 대한 인식 - 대학원에 재학 중인 교사를 중심으로 -)

  • Na, Gwisoo
    • Communications of Mathematical Education
    • /
    • v.28 no.4
    • /
    • pp.513-528
    • /
    • 2014
  • This study is intended to examine 36 in-service secondary school mathematics teachers' conceptions of proof in the context of mathematics and mathematics education. The results suggest that almost teachers recognize the role as justification well but have the insufficient conceptions about another various roles of proof in mathematics. The results further suggest that many of teachers have vague concept-images in relation with the requirement of proof and recognize the insufficiency about the actual teaching of proof. Based on the results, implications for revision of mathematics curriculum and mathematics teacher education are discussed.

A Study on Development of Program connecting with math-story books and web 2.0map(Google map) (수학교양도서와 웹 2.0지도(구글맵) 매쉬업을 통한 수학 이야기 지도 만들기 프로그램 개발)

  • Kim, Sang-Mi;Kwon, Oh-Nam
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.4
    • /
    • pp.443-458
    • /
    • 2011
  • There has been a lively discussion on improving Korean students' academic achievement and the imbalance in their recognition of the value of mathematics. In this context, there is a need for a program that enables the majority students who regards mathematics as a subject for the entrance examination to recognize the practicality and historicity of mathematics. Educational books on mathematics in everyday life or the history of mathematics are also expected to serve as an effective tool. In addition, Web 2.0 Map is another means of representing mathematics in everyday life and the history of mathematics in connection with the practical context. The active storytelling process in which mathematics in the practical context in mathematical educational books is represented in Web 2.0 Map is expected to help to understand in depth the practicality and historicity of mathematics. Nevertheless, mathematical educational books and Web 2.0 Map may lead to a considerable variety of outcomes and speeds if carrying out tasks depending on the student's competence and may have practical difficulties in being operated in class. These concerns, however, can be resolved through the creative activity programs adopted in conformance with the 2009 revised curriculum. Therefore, this study intends to develop a program for creating mathematical story maps through mathematical educational books and the Mashup of Web 2.0 Map in accordance with the process of developing activity programs. This study also intends to determine its effectiveness in enabling students to recognize the practical and historical values of mathematics.

  • PDF

Teaching the Comprehension of Word Problems through Their Mathematical Structure in Elementary School Mathematics (초등수학에서 문장제의 수학적 구조 파악을 통한 문장제 이해 지도 방안)

  • Ra, Woo-Seong;Paik, Suck-Yoon
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.13 no.2
    • /
    • pp.247-268
    • /
    • 2009
  • The purpose of this study was to examine the mathematical components of word problems and the structure of the components, to examine the characteristics of the understanding of mathematics high achievers about word problems, and ultimately to devise a teaching method geared toward facilitating learner understanding of the word problems. Given the findings of the study, the following conclusion was reached: First, word problems could be categorized according to their mathematical components, namely the mathematical structure of multiple variables provided to learners for their problem solving. And learner's reaction might hinge on the type of word problems. Second, the mathematics high achievers relied on diverse strategies to understand the mathematical components of word problems to solve the problems. The use of diverse strategies made it possible for them to succeed in problem solving. Third, identifying the characteristics of the understanding of the mathematics high achievers about word problems made it possible to layout successful lesson plans that stressed understanding of the mathematical structure of word problems. And the teaching plans enabled the learners to get a better understanding of the given word problems.

  • PDF

확률론적 논증을 통한 정당화 지도에 관한 연구

  • Lee, Gyeong-Hui
    • Communications of Mathematical Education
    • /
    • v.15
    • /
    • pp.189-194
    • /
    • 2003
  • 급격하게 변하고 있는 이 사회에 맞춰 수학이 변하고 있다. 이에 따라 학교 수학에서의 증명지도가 변해야할 필요성이 있다. 본 연구에서는 기존의 증명 개념을 아우르는 보다 포괄적인 개념으로써 정당화를 소개하고 정당화 지도 방안을 제안한다. 또, 기존의 형식적이고 엄밀한 연역적 증명과 정당화가 어떻게 다른지 비교해 보고 실제 수업하는데 도움을 줄 수 있도록 활용 방안을 간단하게 제시하고자 한다.

  • PDF