Some properties on the mathematical hyper-dimensional figures by 'the principle of the permanence of equivalent forms' was investigated. It was supposed that there are 2 conjectures on the making n-dimensional figures : simplex (a pyramid type) and a hypercube(prism type). The figures which were made by the 2 conjectures all satisfied the sufficient condition to show the general Euler's Theorem(the Euler's Characteristics). Especially, the patterns on the numbers of the components of the simplex and hypercube are fitted to Binomial Theorem and Pascal's Triangle. It was also found that the prism type is a good shape to expand the Hasse's Diagram. 5 mathematically gifted high school students were mentored on the investigation of the hyper-dimensional figure by 'the principle of the permanence of equivalent forms'. Research products and ideas students have produced are shown and the 'guided re-invention method' used for mentoring are explained.
Journal of Elementary Mathematics Education in Korea
/
v.14
no.3
/
pp.789-806
/
2010
As calls for more attention toward social minority group increases in our society recently, in the field of mathematics education more attention toward an issue about mathematics underachievers is being amplified. Thus, the present study is to examine the effects of teaching method considering students' cognitive characteristics on mathematical underachievers' problem solving and mathematical disposition. For this study, 10 fifth graders identified as mathematical underachievers based on the results of the national level diagnosis assessment and school based assessment were voluntarily selected from an elementary school in Seoul. The results of this study found out the fact that students participating in this program improved in terms of an ability both to solve problems in various ways and to explain an process of problem solving using spoken or written language and drawings. In addition, learning environment respecting students' own mathematical ideas seems to positively influence students' attitudes toward mathematics learning and mathematical dispositions. Furthermore, this study pointed out that mathematical underachievers tend to have difficulty in expressing their own mathematical thinking by reason of linguistic limitation. Finally, the findings of this study imply that for effective teaching of mathematics underachievers, these students' own informal experience and knowledge about mathematics as well as their characteristics regarding learning difficulties should be strongly considered.
Proceedings of the Korean Information Science Society Conference
/
2001.04b
/
pp.664-666
/
2001
학생들에게 흥미와 관심을 가지게 하면서 수학수업을 효과적으로 할 수 있는 방법론에 대한문제는 수학교육의 관심사중 하나이다. 그러나 실상 교사들이 현장에서 쉽게 이행할 수 있는 학습자료의 개발이나 그 활용은 미진한 상태이다. 본 연구에서는 아동들의 발달수준에 맞는 적절한 경험을 제공하여야 한다는 입장엣 수학적 힘을 기르기 위해 수준별, 개인별 수학학습에 바탕을 두고 학습자 중심의 학습능력을 키울 수 있는 웹 기반 게임형 초등 수학 학습 프로그램을 개발한다. 이 시스템은 학습자 진단평가로 학습자 수준을 판단한 다음 단계로 수준 결과에 따라 Story 학습을 통하여 단계별 학습내용의 기본원리를 설명한다. 그 다음에는 story학습에서 배운 기본원리를 응용하여 학습할 수 있도록 설계된 게임학습을 하게 함으로써 학습자는 능동적인 학습참여와 다양한 수학적 사고를 육성시킬 수 있고, 보다 쉽게 학습목표에 도달할 수 있다.
알고리즘이란 ‘유한한 단계를 거쳐 일련의 문제를 해결하기 위한 명확하고 체계적인 방법’ 으로써 수량에 관련된 문제를 보다 신속 ${\cdot}$ 정확하게 처리하기 위하여 역사적으로 다양한 알고리즘이 존재 ${\cdot}$ 변천해 왔다. 계산기가 발명되기 전까지는 지필 알고리즘이 매우 강조되어 왔으나 계산기가 상용화되면서 지필알고리즘에 대한 효용성과 활용도가 점차 줄어들고 있으나 지필 알고리즘은 수학학습의 기초 ${\cdot}$ 기본인 동시에 뼈대로써 그 가치와 역할은 여전히 중요하다. 그러나 표준화된 지필 알고리즘에 대한 지나친 강조로 인해 학생들은 대수적 구조나 계산 원리를 바르게 이해하지 못한 채 반복 연습을 통해 익힌 표준 알고리즘을 기계적으로 적용하여 답을 구하는 경우가 많으며, 이로 인해 학생들은 수학학습에 대한 불안감과 기피현상이 보이고 있다. 또 인간의 창조적 사고활동의 최종적인 산물인 표준 알고리즘은 대안적인 알고리즘에 비해 효율성에서 앞서지만 학생들의 사고 수준에서는 그 원리를 이해하기 힘든 경우가 있을 것이다. 따라서 수학교육의 목적 중의 하나인 문제 해결력을 기르기 위해, 그리고 표준 알고리즘의 가치와 효율성을 인식시키고, 수학학습에 대한 불안감을 줄이기 위해 표준 알고리즘뿐만 아니라 대안적인 알고리즘을 병행하여 지도할 필요가 있다.
The purpose of this research is to seek for principles and methods of multicultural mathematics teacher education. It began with an overview of theories of multicultural education and of multicultural teacher education in order to address the questions of what is the goal of multicultural education and what constitutes the competence of multicultural teachers. Then, cases of multicultural mathematics teacher education were reviewed. Based on that, this research identified three domains of teacher competence: domains of affect, of cognition, and of behavior. This paper also presented what constitutes each domains of competence and how to promote the development of each type of teachers' multicultural competence. This paper discussed implications to multicultural teacher education in Korean society.
This study suggests new interpretation about ancient mathematician Archimedes' 'method'. For this, we examined the core issue related to the interpretation of the 'method' and identified the unclear relation between the principle of the lever and the indivisibles, both of which have consisted of the main point of arguments. And by having conducted the exploratory historical guesswork about Archimedes' careful use of indivisibles, we make a hypothesis that the role of the principle of the lever in Archimedes' 'method' should be the control of ratio of change.
In this paper we study Gergonne's point and its adjoint points of triangle using the principle of the lever. We prove existence of Gergonne's point and its adjoint points, suggest new proof method of a equality related with Gergonne's point. We find new equalities related with adjoint points of Gergonne's points, and prove these using the principle of the lever.
베나세라프의 수의 비고유성 논증은 플라톤주의에 대한 강력한 반박들 중의 하나다. 이에 대한 플라톤주의 진영에서의 대응은 현재까지 네 가지 정도가 있었다. 라이트와 헤일로 대표되는 신프레게주의, 샤피로의 ante rem 구조주의, 밸러거의 혈기왕성한 플라톤주의, 그리고 잴타의 원리화된 플라톤주의에서의 대응들이 그것들이다. 이 네 가지 대응들 중 잴타의 원리화된 플라톤주의는 진정한 플라톤주의로 간주되기 매우 힘들며, 신프레게주의는 수의 비고유성 문제해결에 심각한 어려움을 갖고 있다. 한편 수의 비고유성 문제를 어느 정도 극복하고 있는 듯이 보이는 샤피로와 밸러거의 견해들 중, 밸러거의 견해는 인식과 지칭의 문제와 관련하여 심각한 난관에 봉착해 있다. 따라서 현재까지 제시된 이론의 상태에서는 샤피로의 견해가 수의 비고유성 문제를 인식의 문제와 함께 가장 잘 해결하고 있는 것으로 평가될 수 있다.
적응하기에 너무나 빠른 속도로 정보의 물결이 굽이치는 현실에서, 초등교육 현장은 지, 덕, 체를 겸비한 조화로운 인간 교육, 즉 참된 인간 교육의 필요성이 강조되고 있다. 그러나 교육 자체의 본질과 목적에 비추어 조화로운 인간을 육성하기 위한 기초교육이 어떤 모습을 띠어야 할 것인가에 대한 문제의식에서 Pestalozzi의 기본 사상, 초등교육의 원리, 수학교육학의 체계를 고찰해 봄으로써 우리의 초등수학교육에 시사하는 바를 찾고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.