• Title/Summary/Keyword: 수학적 보정

Search Result 78, Processing Time 0.028 seconds

Estimation of Weld Bead Shape and the Compensation of Welding Parameters using a hybrid intelligent System (하이브리드 지능시스템을 이용한 용접 파라메타 보상과 용접형상 평가에 관한 연구)

  • Kim Gwan-Hyung;Kang Sung-In
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1379-1386
    • /
    • 2005
  • For efficient welding it is necessary to maintain stability of the welding process and control the shape of the welding bead. The welding quality can be controlled by monitoring important parameters, such as, the Arc Voltage, Welding Current and Welding Speed during the welding process. Welding systems use either a vision sensor or an Arc sensor, both of which are unable to control these parameters directly. Therefore, it is difficult to obtain necessary bead geometry without automatically controlling the welding parameters through the sensors. In this paper we propose a novel approach using fuzzy logic and neural networks for improving welding qualify and maintaining the desired weld bead shape. Through experiments we demonstrate that the proposed system can be used for real welding processes. The results demonstrate that the system can efficiently estimate the weld bead shape and remove the welding detects.

GPS/INS Data Fusion and Localization using Fuzzy Inference/UPF (퍼지추론/UPF를 이용한 UGV의 GPS/INS 데이터 융합 및 위치추정)

  • Lee, So-Hee;Yoon, Hee-Byung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.408-414
    • /
    • 2009
  • A GPS/INS system is widely used in the UGV to estimate position during the mission. However, there are few restrictions when a GPS/INS system used alone. For example, GPS provides precise location information but easily interrupted by external factors like weather, environment, etc. INS provides continuous location data but positioning errors grew very rapidly with time. Therefore, it is necessary to integrating multi-sensors for more continuous and correct position estimation. In this paper, we propose location estimation algorithm of the UGV for GPS/INS integrated system that combines Fuzzy Inference and Unscented Particle Filter(UPF) to improve navigation. Fuzzy inference provides the simplest method integrating GPS/INS and UPF is non-linear estimation filter well suited to the correction of errors. The performance of the proposed algorithm was tested to compare with other algorithms. the results show that the proposed algorithm is more accuracy in position estimation and ensures continuous position tracking.

Incremental Model Formulation of Creep under Time-varying Stress History (시간이력 하중을 받는 콘크리트의 점증적 크리프 모델)

  • Park, Yeong-Seong;Shin, Dong-Hun;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.3
    • /
    • pp.755-761
    • /
    • 2014
  • Internal or external restraint of concrete strain due to drying shrinkage and creep in concrete structures causes mechanical strain and becomes a source of persistent change in creep-causing stress conditions. Mathematical modeling to incorporate the persistent change of creep-inducing stress is generally achieved with consideration of the ages of concrete and concrete properties at the times of loadings, and stress history. This paper presents an incremental format of creep model based on parallel creep concept to depict the creep under time-varying stress history in developing creep strain. Laboratory experiments are carried out to validate the performance of the presented creep model. Typical creep phenomena are addressed through the comparisons between the measured and predicted creep strains.

The Design of Target Tracking System Using FBFE Based on VEGA (VEGA 기반 FBFE을 이용한 표적 추적 시스템 설계)

  • 이범직;주영훈;박진배
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.359-365
    • /
    • 2001
  • In this paper, we propose the design methodology of target tracking system using fuzzy basis function expansion(FBFE) based on virus evolutionary genetic algorithm (VEGA). In general, the objective of target tracking is to estimate the future trajectory of the target based on the past position of the target obtained from the sensor. In the conventional and mathematical nonlinear filtering method such as extended Kalman filter(EKF), the performance of the system may be deteriorated in highly nonlinear situation. To resolve these problems of nonlinear filtering technique, by appling artificial intelligent technique to the tracking control of moving targets, we combine the advantages of both traditional and intelligent control technique. In the proposed method, after composing training datum from the parameters of extended Kalman filter, by combining FDFE, which has the strong ability for the approximation, with VEGA, which prevent GA from converging prematurely in the case of lack of genetic diversity of population, and by idenLifying the parameters and rule numbers of fuzzy basis function simultaneously, we can reduce the tracking error of EKF. Finally, the proposed method is applied to three dimensional tracking problem, and the simulation results shows that the tracking performance is improved by the proposed method.

  • PDF

Travel time measurement using sensor loader system (센서부자 시스템을 이용한 도달시간 계측)

  • Hwang, Eui-Ho;Lee, Eul-Rae;Kim, Jeong-Yup;Choi, Hyuk-June
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.310-310
    • /
    • 2011
  • 본 연구에서는 금강의 평수기 하류 평균도달시간을 산정하고 이를 통해 이수, 치수, 환경적인 측면을 고려하여 유역의 유하량별 하류지점의 도달시간을 실측하고, 측정 자료를 근거로 하여 수학적모델링을 통해 지류 및 본류의 시나리오별 유출량-평균도달시간 관계를 분석하여 수자원의 개발 이용과 보전, 관리를 위한 기초자료를 제공하고자 하였다. 이를 위해 하천 전 구간에서 실측할 수 있는 센서기술을 활용하였으며, 활용한 센서부자를 이용하여 금강의 금남보~공주대교 구간에 대하여 계측을 수행하였다. 계측결과 유출량-평균도달시간에 영향을 미치는 요인으로는 하상경사, 하폭, 지류유입량, 강우량, 식생, 하천구조물 등이 있으며, 이러한 요인을 수리학적 모형을 적용하여 모든 사상에 대해 정확한 해석을 한다는 것은 매우 어려운 일이다. 이로 인해 유출량-평균도달시간과의 관계 분석을 위해서는 많은 계측이 수반되어야 하며, 계측 결과를 토대로 각 하천별 유출량별 평균도달시간 관계에 대한 정확한 해석 방법을 제안하고자 하였다. 본 연구의 계측결과는 평 갈수기 수질사고로 인한 위기상황 대처시 도달시간 참조 자료로 활용이 가능할 것이며, 향후 지속적인 예측을 위해 수치모형의 매개변수를 보정하여 신뢰성 높은 도달시간표 제작이 가능하다. 또한, 기존 홍수예보 자료를 보완할 수 있는 유비쿼터스 기반 실측기술을 개발하고 이를 적용할 수 있는 기반을 구축함으로써 홍수예보의 신뢰성을 확보하고 홍수기댐 운영의 효율성을 확보할 수 있을 것으로 기대된다.

  • PDF

Quantitative analysis of selenium species in sea food using solid phase extraction and HPLC-ICP/MS (해산물 시료에서 solid-phase extraction 및 HPLC-ICP/MS를 이용한 셀레늄 화학종의 정량분석)

  • Kim, Eunju;Joo, Minkyu;Kwon, Hyosik;Pak, Yongnam
    • Analytical Science and Technology
    • /
    • v.26 no.5
    • /
    • pp.307-314
    • /
    • 2013
  • Selenium exists in various forms of chemical species. The activity and bioavailability is strongly dependent on its chemical form and concentration. Consequently the information on each selenium species and its concentration must be exactly determined for the food we take in. In this study, selenium species in seafood were separated and quantified by RP (reversed phase) HPLC (high performance liquid chromatography) coupled with ICP-MS (inductively coupled plasma mass spectrometry) using post-column isotope dilution. $^{79}Br$, which interferes on $^{80}Se$, has mostly been removed by solid phase extraction and then mathematical correction has been applied for the more accurate correction. The experimental result for CRM (certified reference material) DOLT-4 agreed well with the certified value but each selenium species could not be compared. SeCys (selenocysteine) and SeMet (selenomethionine) were the major species detected in seafood such as belt fish, spanish mackerel, and squid that have been serving as Korean diet. The concentrations found in Korean sea food for SeCys and SeMet were in the range of 0-661.6 mg/kg and 137.3-462.7 mg/kg, respectively.

Measuring the quality of research papers across countries using Relatively Rank-normalized Impact Factor ($R^2nIF$) (상대적순위보정지수($R^2nIF$)를 활용한 주요국의 SCI 논문 질적 수준 비교분석)

  • Oh, Donghun;Kim, Youngjun;Kim, Yongjeong
    • Journal of Technology Innovation
    • /
    • v.21 no.1
    • /
    • pp.85-108
    • /
    • 2013
  • This paper introduces a new qualitative measurement indicator, Relatively Rank-normalized Impact Factor ($R^2nIF$) that can overcome drawbacks of the existing research performance measures. With the help of this innovative indicator, this study analyzes and compares the quality of research papers across countries and National Science Indicators (NSI) standard academic fields. The development of an improved bibliometric indicator for evaluating the quality of research papers and disentangling the "international" dimension of research performance will be of interest to academics and practitioners alike.

  • PDF

Industrial Measuring System (IMS) and its Software Structure (Industrial Measuring System(IMS)과 그 소프트웨어의 구조)

  • Kim, Byung Guk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.4
    • /
    • pp.157-165
    • /
    • 1992
  • IMS, a precision coordinate measuring system using theodolites, is being used to survey and align precision mechanical structures. Compared to conventional mechanical devices for precision measurement, such as CMM (Coordinate Measuring Machine), the target objects of IMS have little limitations in their sizes and shapes, and can be measured in place. Also since IMS displays the coordinate values in real-time, it is possible to perform measurement and alignment of the objects simultaneously. In this paper, the elements and functions of IMS are introduced and a mathematical model of the new software, which utilizes an altered version of the 'Bundle' adjustment algorithm of analytical photogrammetry for the specific use of IMS, is demonstrated. Differences of the mathematical model of IMS from that of analytical photogrammetry are discussed by following the steps of the 'Measurement' option in the 'Main Menu' of the software. A new IMS calibration method is proposed to calculate better first approximations for the 4 unknown theodolite parameters and the coordinates of target objects. The software provides the 'Bundle' procedure for the first approximations of the unknowns before the real-time measurement. It also provides an opportunity of 'bundling' to re-adjust the collected positional data at the end of the measurement.

  • PDF

Error Minimization of Angular Velocity using Encoders and Gyro (엔코더와 자이로를 이용한 각속도 오차 최소화)

  • Kim, Jung-Min;Do, Joo-Cheol;Kim, Sung-Shin
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.814-819
    • /
    • 2010
  • This paper is presented to study the error minimization of angular velocity for AGV(autonomous ground vehicle). The error minimization of angular velocity is related to localization technique which is the most important technique for autonomous vehicle. Accelerometer, yaw gyro and electronic compass have been used to measure angular velocity. And methods for error minimization of angular velocity have been actively studied through probabilistic methods and sensor fusion for AGVs. However, those sensors still occure accumulated error by mathematical error, system characters of each sensor, and computational cost are increased greatly when several sensor are used to correct accumulated error. Therefore, this paper studies about error minimization of angular velocity that just uses encoder and gyro. To experiment, we use autonomous vehicle which is made by ourselves. In experimental result, we verified that the localization error of proposed method has even less than the localization errors which we just used encoder and gyro respectively.

DEVELOPMENT OF THREE DIMENSIONAL MEASURING PROGRAM WITH FRONTAL AND LATERAL CEPHALOMETRIC RADIOGRAPHS -PART 1. COMPUTATION OF THE THREE-DIMENSIONAL COORDINATES BY COMPENSATION OF THE ERROR OF THE HEAD POSITION IN ORDINARY NON-BIPLANAR CEPHALOSTAT- (정모 및 측모 두부 방사선 규격사진을 이용한 3차원 계측 프로그램의 개발 -1. 단일 방사선원으로 촬영된 두부 방사선사진의 두부 위치 보정을 이용한 3차원 좌표의 산출-)

  • Lee, Geun-Ho;Lee, Sang-Han;Jang, Hyon-Joong;Kwon, Tae-Geon
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.27 no.3
    • /
    • pp.214-220
    • /
    • 2001
  • The clinical application of the three-dimensional radiographic technique had been limited to standard Broadbent-Bolton cephalometer with biplanar stereoradiography. We developed a new method for compensating the error of head position in ordinary non-biplanar cephalostat. It became to possible to use the three dimensional cephalogram commonly in clinical bases. 1. The method of methemetical compensation of head positioning error in non-biplanar condition was evaluated with dry skull. The error of the method of first and the second trial was $0.46{\pm}1.21$, $0.33{\pm}0.90mm$, which means the error of the head positioning correction in conventional cephalogram was within clinical acceptance. 2. The reproducibility of this system for clinical application was 0.54 mm ($-2.99{\sim}2.26mm$) which defines the absolute mean difference of the first and second trial. Compare to the The landmark identification error $1.2{\pm}1.6mm$, the error of the measurement was within the range of landmark identification error. The result indicates the adequate clinical accuracy of the computation of three-dimensional coordinates by compensation of the error of the head position in ordinary non-biplanar cephalostat.

  • PDF