• Title/Summary/Keyword: 수학수행평가

Search Result 314, Processing Time 0.028 seconds

A Two-Stage Learning Method of CNN and K-means RGB Cluster for Sentiment Classification of Images (이미지 감성분류를 위한 CNN과 K-means RGB Cluster 이-단계 학습 방안)

  • Kim, Jeongtae;Park, Eunbi;Han, Kiwoong;Lee, Junghyun;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.3
    • /
    • pp.139-156
    • /
    • 2021
  • The biggest reason for using a deep learning model in image classification is that it is possible to consider the relationship between each region by extracting each region's features from the overall information of the image. However, the CNN model may not be suitable for emotional image data without the image's regional features. To solve the difficulty of classifying emotion images, many researchers each year propose a CNN-based architecture suitable for emotion images. Studies on the relationship between color and human emotion were also conducted, and results were derived that different emotions are induced according to color. In studies using deep learning, there have been studies that apply color information to image subtraction classification. The case where the image's color information is additionally used than the case where the classification model is trained with only the image improves the accuracy of classifying image emotions. This study proposes two ways to increase the accuracy by incorporating the result value after the model classifies an image's emotion. Both methods improve accuracy by modifying the result value based on statistics using the color of the picture. When performing the test by finding the two-color combinations most distributed for all training data, the two-color combinations most distributed for each test data image were found. The result values were corrected according to the color combination distribution. This method weights the result value obtained after the model classifies an image's emotion by creating an expression based on the log function and the exponential function. Emotion6, classified into six emotions, and Artphoto classified into eight categories were used for the image data. Densenet169, Mnasnet, Resnet101, Resnet152, and Vgg19 architectures were used for the CNN model, and the performance evaluation was compared before and after applying the two-stage learning to the CNN model. Inspired by color psychology, which deals with the relationship between colors and emotions, when creating a model that classifies an image's sentiment, we studied how to improve accuracy by modifying the result values based on color. Sixteen colors were used: red, orange, yellow, green, blue, indigo, purple, turquoise, pink, magenta, brown, gray, silver, gold, white, and black. It has meaning. Using Scikit-learn's Clustering, the seven colors that are primarily distributed in the image are checked. Then, the RGB coordinate values of the colors from the image are compared with the RGB coordinate values of the 16 colors presented in the above data. That is, it was converted to the closest color. Suppose three or more color combinations are selected. In that case, too many color combinations occur, resulting in a problem in which the distribution is scattered, so a situation fewer influences the result value. Therefore, to solve this problem, two-color combinations were found and weighted to the model. Before training, the most distributed color combinations were found for all training data images. The distribution of color combinations for each class was stored in a Python dictionary format to be used during testing. During the test, the two-color combinations that are most distributed for each test data image are found. After that, we checked how the color combinations were distributed in the training data and corrected the result. We devised several equations to weight the result value from the model based on the extracted color as described above. The data set was randomly divided by 80:20, and the model was verified using 20% of the data as a test set. After splitting the remaining 80% of the data into five divisions to perform 5-fold cross-validation, the model was trained five times using different verification datasets. Finally, the performance was checked using the test dataset that was previously separated. Adam was used as the activation function, and the learning rate was set to 0.01. The training was performed as much as 20 epochs, and if the validation loss value did not decrease during five epochs of learning, the experiment was stopped. Early tapping was set to load the model with the best validation loss value. The classification accuracy was better when the extracted information using color properties was used together than the case using only the CNN architecture.

The Compositions and the Characteristics of the Chinese National Test for University Admissions, and the Analysis on Items Concerning Chemistry (중국 대학입학시험의 구성 및 특징과 화학 문항 분석)

  • Kim, Hyun-Kyung
    • Journal of The Korean Association For Science Education
    • /
    • v.31 no.8
    • /
    • pp.1158-1174
    • /
    • 2011
  • In this study, we examined the compositions, basic principles, and the area of the National Higher Education Entrance Examination (GaoKao) in 2009, we also analyzed the categories and characteristics of items. Also, the GaoKao was analyzed in terms of test specifications, the number of items, item patterns, difficulty levels, and implications of the College Scholastic Ability Test(CSAT) were explored. Results show Natural Science section of the National Test 1, 2 are 300 points per 150 min, and Natural Science, and Chemistry of Shanghai is 150 points each per 120 min. Also, the GaoKao contained multiple choice and fill in the blanks questions, and the description items are composed of experiments of various types. The GaoKao Natural Science section is composed of physics, chemistry, biology but not earth science, which is different from the CSAT. GaoKao requires basic understanding or the observation ability to reasoning, the complex thinking ability, especially emphasized on the experiment ability. The range of possible questions is in the examination outline, not the curriculum, and the ratio of questions from the University level is high. In the analysis of the behavioral domain, the ratios of the understanding and application items is higher than the CSAT, and inquiry items is lower, but the inquiry items are deeper. In case of the ratio of the expected correct answer, National Test 1 and National Test 2 is similar, but the difficult items or about 20~39% of the test is 4~5 times to that of the CSAT, making the GaoKao very difficult. The peculiar characteristics of GaoKao is the emphasis on the experiment, and even though the practical items is of lower ratio, they are very useful in life.

Dynamic Traffic Assignment Using Genetic Algorithm (유전자 알고리즘을 이용한 동적통행배정에 관한 연구)

  • Park, Kyung-Chul;Park, Chang-Ho;Chon, Kyung-Soo;Rhee, Sung-Mo
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.51-63
    • /
    • 2000
  • Dynamic traffic assignment(DTA) has been a topic of substantial research during the past decade. While DTA is gradually maturing, many aspects of DTA still need improvement, especially regarding its formulation and solution algerian Recently, with its promise for In(Intelligent Transportation System) and GIS(Geographic Information System) applications, DTA have received increasing attention. This potential also implies higher requirement for DTA modeling, especially regarding its solution efficiency for real-time implementation. But DTA have many mathematical difficulties in searching process due to the complexity of spatial and temporal variables. Although many solution algorithms have been studied, conventional methods cannot iud the solution in case that objective function or constraints is not convex. In this paper, the genetic algorithm to find the solution of DTA is applied and the Merchant-Nemhauser model is used as DTA model because it has a nonconvex constraint set. To handle the nonconvex constraint set the GENOCOP III system which is a kind of the genetic algorithm is used in this study. Results for the sample network have been compared with the results of conventional method.

  • PDF

A study on the Degradation and By-products Formation of NDMA by the Photolysis with UV: Setup of Reaction Models and Assessment of Decomposition Characteristics by the Statistical Design of Experiment (DOE) based on the Box-Behnken Technique (UV 공정을 이용한 N-Nitrosodimethylamine (NDMA) 광분해 및 부산물 생성에 관한 연구: 박스-벤켄법 실험계획법을 이용한 통계학적 분해특성평가 및 반응모델 수립)

  • Chang, Soon-Woong;Lee, Si-Jin;Cho, Il-Hyoung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.1
    • /
    • pp.33-46
    • /
    • 2010
  • We investigated and estimated at the characteristics of decomposition and by-products of N-Nitrosodimethylamine (NDMA) using a design of experiment (DOE) based on the Box-Behken design in an UV process, and also the main factors (variables) with UV intensity($X_2$) (range: $1.5{\sim}4.5\;mW/cm^2$), NDMA concentration ($X_2$) (range: 100~300 uM) and pH ($X_2$) (rang: 3~9) which consisted of 3 levels in each factor and 4 responses ($Y_1$ (% of NDMA removal), $Y_2$ (dimethylamine (DMA) reformation (uM)), $Y_3$ (dimethylformamide (DMF) reformation (uM), $Y_4$ ($NO_2$-N reformation (uM)) were set up to estimate the prediction model and the optimization conditions. The results of prediction model and optimization point using the canonical analysis in order to obtain the optimal operation conditions were $Y_1$ [% of NDMA removal] = $117+21X_1-0.3X_2-17.2X_3+{2.43X_1}^2+{0.001X_2}^2+{3.2X_3}^2-0.08X_1X_2-1.6X_1X_3-0.05X_2X_3$ ($R^2$= 96%, Adjusted $R^2$ = 88%) and 99.3% ($X_1:\;4.5\;mW/cm^2$, $X_2:\;190\;uM$, $X_3:\;3.2$), $Y_2$ [DMA conc] = $-101+18.5X_1+0.4X_2+21X_3-{3.3X_1}^2-{0.01X_2}^2-{1.5X_3}^2-0.01X_1X_2+0.07X_1X_3-0.01X_2X_3$ ($R^2$= 99.4%, 수정 $R^2$ = 95.7%) and 35.2 uM ($X_1$: 3 $mW/cm^2$, $X_2$: 220 uM, $X_3$: 6.3), $Y_3$ [DMF conc] = $-6.2+0.2X_1+0.02X_2+2X_3-0.26X_1^2-0.01X_2^2-0.2X_3^2-0.004X_1X_2+0.1X_1X_3-0.02X_2X_3$ ($R^2$= 98%, Adjusted $R^2$ = 94.4%) and 3.7 uM ($X_1:\;4.5\;$mW/cm^2$, $X_2:\;290\;uM$, $X_3:\;6.2$) and $Y_4$ [$NO_2$-N conc] = $-25+12.2X_1+0.15X_2+7.8X_3+{1.1X_1}^2+{0.001X_2}^2-{0.34X_3}^2+0.01X_1X_2+0.08X_1X_3-3.4X_2X_3$ ($R^2$= 98.5%, Adjusted $R^2$ = 95.7%) and 74.5 uM ($X_1:\;4.5\;mW/cm^2$, $X_2:\;220\;uM$, $X_3:\;3.1$). This study has demonstrated that the response surface methodology and the Box-Behnken statistical experiment design can provide statistically reliable results for decomposition and by-products of NDMA by the UV photolysis and also for determination of optimum conditions. Predictions obtained from the response functions were in good agreement with the experimental results indicating the reliability of the methodology used.