• Title/Summary/Keyword: 수평전단강도

Search Result 153, Processing Time 0.023 seconds

Shear Strength of Reinforced High Strength Concrete Deep Beams with Geometric Condition (기하학적 경계조건을 고려한 고강도 철근 콘크리트 춤이 큰 보의 전단강도)

  • 오정근;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.1
    • /
    • pp.109-118
    • /
    • 1998
  • 전단거동에 의해 지배되는 고강도 철근콘크리트 춤이 큰 보의 전단역학적 거동 및 전단강도특성을 고려한 이론식을 제시하고자 소성이론에 근거한 극한해석에서 상계치정리를 이용하여 이론적 전개를 하였으며, 고강도 R/C춤이 큰 보의 전단응력에 영향을 미치는 콘크리트 압축강도, 수직전단보강근 및 수평잔단보강근의 보강효과를 고려한 이론식을 제시하였으며, 수평철근 즉 주인장철근 및 수평전단보강근의 장부작용을 고려하였다. 실험결과와 비교할 때 제안식은 수직잔단보강근의 전단보강효과를 과대평가하고있으며, 수평전단보강근의 효과를 적절하게 평가하고 있음을 나타내었다. 또 전단스팬비가 0.5, 0.85인 경우에는 제안식에 의한 값이 다소 낮게 나타내, 전단스팬비가 낮은 경우는 다소 과소평가하는 것으로 나타났다.

Interface Horizontal Shear Strength between UHPC Deck and Concrete Girder with Stirrups (스터럽을 이용한 UHPC 바닥판과 콘크리트 거더 연결부의 수평전단강도)

  • Yoo, Dong-Min;Hwang, Hoon-Hee;Kim, Sung-Tae;Park, Sung-Yong
    • Composites Research
    • /
    • v.25 no.5
    • /
    • pp.164-168
    • /
    • 2012
  • The purpose of this experimental research was to evaluate interface shear requirements between UHPC deck and concrete girder with stirrups according to Korean Highway Bridge Design Code and AASHTO LRFD Bridge Design Specifications. The push-out tests are performed to analize the composite behavior in interface of connection. The test results were compared to the values of interface horizontal shear strength predicted by current codes. As the results, it was observed that the test results provided more conservative estimate for horizontal shear strength than the values by current codes equation.

Calculation of Horizontal Shear Strength in Reinforced Concrete Composite Beams (철근콘크리트 합성보의 수평전단강도 산정)

  • Kim, Min-Joong;Lee, Gi-Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.772-781
    • /
    • 2020
  • A direct shear member resists external forces through the shear transfer of reinforcing bars placed at the concrete interface. The current concrete structural design code uses empirical formulas based on the shear friction analogy, which is applied to the horizontal shear of concrete composite beams. However, in the case of a member with a large amount of reinforcing bars, the shear strength obtained through the empirical formula is lower than the measured value. In this paper, the limit state of newly constructed composite beams on an existing concrete girder is defined using stress field theory, and material constitutive laws are applied to gain horizontal shear strength while considering the tension-stiffening and softening effects of concrete struts. A simplified method of calculating the shear strength is proposed, which was validated by comparing it with the related design code provisions. As a result, it was confirmed that the method generally shows a similar tendency to the experimental results when the shear reinforcing bar yields, unlike the regulations of the design code, where differences in the predicted value of shear strength occur according to the shear reinforcement ratio.

Interface Shear Strength in Half Precast Concrete Slab (반두께 P.C. 슬래브의 면내전단내력에 관한 연구)

  • 이광수;김대근;최종수;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.4
    • /
    • pp.161-168
    • /
    • 1994
  • Half-P.C. slab system is the composite structural system which utilizes precast concrete for lower portion and cast in situ concrete for upper portion slab. When the composite slab using Half P.C. slab is deformed by flexural moment, horizontal shear happened at the interface between Half P.C. slab and topping concrete. To resist horizontal shear strength a scratch method has tried. To determine ultimate interface shear strength, shear stress, and shear coefficient, high and normal strength concrete are used for topping concrete. Major variables are compressive strength of topping concrete with or without shear reinforcement, quantitative roughness of the P.C. :surface and tie or untie of the stud with welded deformed wire fabric in the P.C. member. The Icross sectional area on joints is 3,200 $cm^2$ in all specimens. Test results showed that shear stress increased, as the depth of the quantitative roughness increased. The horizontal shear strength could be resisted with safe by the quantitative roughness without shear tie. A shear coefficient determinant equation is proposed such that K = 0.025918 + 0.0068894$\cdot$R – 0.000182354${\cdot}R^2$

Evaluation of Design Method and Shear Transfer Capacity on the Horizontal Interface of PC Composite Beams (PC 합성보의 수평접합면 전단력 전달성능 평가 및 설계법 분석)

  • Moon, Jeong-Ho;Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.81-90
    • /
    • 2013
  • The purpose of this study is to evaluate the horizontal shear strength on the interface between PC and cast-in-place concrete for PC composite beams. Six specimens were tested to examine the structural performance of the horizontal interface with different surface condition and stirrup detailing. Except for SF-291B specimen failed in flexural compression, strengths and deformation capacities of five specimens were determined by horizontal shear failure. Horizontal shear strengths by composite horizontal shear or shear friction in current codes could be used to predict the horizontal shear capacity of the interface for specimens. Also detailing for stirrup by PCI design provision could be used to accomplish the composite action in the interface.

Evaluation of Horizontal Shear Strength for Concrete Composite Members (콘크리트 합성부재의 수평 전단강도 평가)

  • Suh, Jung-Il;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min;Kim, Chul-Goo
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.4
    • /
    • pp.407-417
    • /
    • 2016
  • In this study, concrete composite beams were tested under two-point loading to evaluate horizontal shear strength. The test variables were a type of composite members (PC+RC, PSC+RC, SFRC+RC), area ratio of high-strength (60MPa) to low-strength concrete (24 MPa), and transverse reinforcement ratio. The test results showed that the contribution of transverse reinforcements and interface conditions had influence on horizontal shear strength. Existing and previous test results were classified according to test methods and the interface conditions and were compared with the predictions of current design codes. On the basis of test results, an improved design method was proposed.

Experimental Study on Ultimate Shear Behaviour of Longitudinally Stiffened Plate Girder Web Panels (수평보강재가 있는 판형복부판의 극한전단거동에 관한 실험연구)

  • Lee, Myung Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.11 no.2 s.39
    • /
    • pp.167-179
    • /
    • 1999
  • The thin web panels of plate girders often need to be reinforced with transverse stiffeners to increase the shear strength. Since early 1960s, extensive researches have been conducted on the ultimate shear strength of plate girder webs with transverse stiffeners. These results have been first adopted into AASHTO(1970) and British Standard(1983) Specifications for the determination of the ultimate shear strength of transversely stiffened web panels. Although the main purposes of reinforcing web panels with longitudinal stiffeners are to increase the buckling strength and to control the lateral deflections due to bending, it has been reported that the longitudinal stiffeners increase the shear strength. However lack of studies has kept the effects of the longitudinal stiffeners on the ultimate shear strength from the design of plate girder web panels. In the present study an experimental investigation is carried out in order to assess the increment of the ultimate shear strength of shear web panels due to the longitudinal stiffeners and the results are compared with the existing failure theories.

  • PDF

Evaluation on the Horizontal Shear Strength of Precast Concrete Slab with the Inverted-Rib-Plus (리브플러스 PC슬래브의 수평전단강도 평가)

  • Park, Keum Sung;Lee, Sang Sup;Choi, Yun Cheul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.6
    • /
    • pp.156-165
    • /
    • 2011
  • This study investigates the horizontal shear behavior of an interface between precast concrete (PC) and topping concrete(RC), and evaluates the horizontal based on the investigations by the experimental. Horizontal shear strength in connected surface is determined by the roughness an interface and the shear reinforcement or not. In this study, the main experimental parameters are the shear reinforcement types in the shape of loop-type and lattice-type, rebar spacing. A total of four specimens were shear strength tested and manufactured. As a result, the horizontal shear strength of reinforced connected surface was found to be controlled by deformation in vertical direction. Comparison of reinforcement shape, the mean initial crack load loop type specimens, the average maximum load and the junction of the average in terms of initial stiffness, respectively 33.7%, 45.9% and 55.2% were large enough. Evaluation results for shear strength equation of existing standard domestic, the loop-type reinforced 2.32 to 4.23 times, lattice-type reinforced 1.65 to 3.06 times appears to be higher. Behavior of interface or strength of structural design criteria was fairly safe side. It does not have any problems in the applied field is considered.

Shear Strength of Steel Fiber Concrete - Plain Concrete Composite Beams (강섬유보강 콘크리트와 일반 콘크리트 합성보의 전단강도)

  • Kim, Chul-Goo;Park, Hong-Gun;Hong, Geon-Ho;Kang, Su-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.5
    • /
    • pp.501-510
    • /
    • 2015
  • Composite construction of precast concrete and cast-in-place concrete is currently used for the modular construction. In this case, the use of steel fiber reinforced concrete (SFRC) could be beneficial for precast concrete. However, the shear strength of such composite members (SFRC and cast-in-place concrete) is not clearly defined in current design codes. In the present study, steel fiber composite beam tests were conducted to evaluate the effect of steel fibers on the composite members. The test variables are the area ratio of SFRC and shear reinforcement ratio. The test results showed that when minimum horizontal shear reinforcement was used, the shear strength of composite beams increased in proportion to the area ratio of steel fiber reinforced concrete. However, because of the steel fiber, the composite beams were susceptible to horizontal shear failure. Thus, minimum horizontal shear reinforcement is required for SFRC composite beams.

Experimental Study on Structural Behavior of Interfaces of Double Composite Girder Using the 80 MPa Concrete (80 MPa급 콘크리트를 활용한 이중합성 거더의 수평접합면 구조거동에 관한 실험적 연구)

  • Yang, In-Wook;Lim, Eol;Ha, Tae-Yul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.400-413
    • /
    • 2016
  • The horizontal shear capacity when the flange of a steel girder is replaced with 80 MPa concrete is important for its structural safety. In this study, 6 specimens with different interface conditions were designed and fabricated based on the Limit State Design Code on Korean Highway Bridges and static tests were performed to measure the horizontal shear capacity. Not only the resistance factors of the stud shear connector, concrete and reinforcement, but also the surface conditions of the casing concrete and spacing of the horizontal shear reinforcements were used as the experimental variables. The experiments showed that the interfaces between the steel girder and the concrete flange have stronger joint performance than those between the concrete flange and deck slab. To ensure the composite action in the plastic zone, the conservative horizontal shear reinforcement is more important than the roughness in the concrete face.