• Title/Summary/Keyword: 수평변위속도

Search Result 51, Processing Time 0.031 seconds

Study on the Analysis of Vehicle Impact to Small Sign Support (소형표지판 지주와 차량의 충돌해석에 관한 연구)

  • Ko, Man-Gil;Kim, Kee-Dong;Sung, Jung-Gon;Yun, Duk-Geun
    • International Journal of Highway Engineering
    • /
    • v.9 no.3
    • /
    • pp.39-50
    • /
    • 2007
  • Barrier VII program is normally used for the design of flexible barrier, but if modelled properly it can be used for the analysis of vehicle impact to small sign posts. In this paper sign post is shown to be modelled as flexible barrier by combining beam and column elements at each beam node. Simulations with the Barrier VII program have been made for 7 impact cases composed of sign posts of circular and H section with rigidly connected support and breakaway support system. The impact speed used for the simulation ranged from 30km/h to 110km/h. The study shows that in the vehicle impacts to a circular sign post with high speed, the large deflection and high inertia force causes the sign plate to hit the windshield leading to a hazard to the occupants. It is also shown that impact to H section post results in small deflection of the post and abrupt velocity change and high deceleration of the impact vehicle causing severe damage to both the vehicle and occupants. Simulation study also shows that breakaway support system eliminates the potential danger of the vehicle impact to the rigidly connected small sign posts by reducing deflection of the post, abrupt change in velocity and deceleration level.

  • PDF

Single Degree of Freedom Hybrid Dynamic Test with Steel Frame Structure (강 뼈대 구조물의 단자유도 하이브리드 동적 실험)

  • Kim, Se-Hoon;Na, Ok-Pin;Kim, Sung-Il;Lee, Jae-Jin;Kang, Dae-Hung
    • Journal of the Korean Society for Railway
    • /
    • v.15 no.4
    • /
    • pp.413-421
    • /
    • 2012
  • The purpose of this study is to evaluate the structural dynamic behavior under hybrid control system. The hybrid test is to consider the interaction between the numerical and physical models. In this paper, single degree of freedom hybrid test was performed with one-bay, two-story steel frame structure. One column at the first floor was selected as a physical substructure and one actuator was used for applying the displacement load in horizontal direction. El Centro as earthquake waves was inputted and OpenSees was employed as the numerical analysis program for the hybrid real-time simulation. As a result, the total time of the hybrid test was about 9.6% of actual measured seismic period. The experimental results agreed well with the numerical one in terms of the maximum displacement. In nonlinear analysis, however, material nonlinearity made a difference of residual strain. Therefore, this hybrid dynamic test can be used to predict the structural dynamic performance more effectively than shaking table test, because of the spatial and economic limitations.

A Fully Coupled Hydrogeomechanical Numerical Analysis of Rainfall Impacts on Groundwater Flow in Slopes and Slope Stability (사면 내의 지하수 유동과 사면의 안정성에 대한 강수 영향의 완전 연동된 수리지질역학적 수치 해석)

  • 김준모
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.5-16
    • /
    • 2002
  • A hydrogeomechanical numerical model is presented to evaluate rainfall impacts on groundwater flow in slopes and slope stability. This numerical model is developed based on the fully coupled poroelastic governing equations for groundwater flow in deforming variably saturated geologic media and the Galerkin finite element method. A series of numerical experiments using the model developed are then applied to an unsaturated slope under various rainfall rates. The numerical simulation results show that the overall hydromechanical slope stability deteriorates, and the potential failure nay initiate from the slope toe and propagate toward the slope crest as the rainfall rate increases. From the viewpoint of hydrogeology, the pressure head and hence the total hydraulic head increase as the rainfall rate increases. As a result, the groundwater table rises, the unsaturated zone reduces, the seepage face expands from the slope toe toward the slope crest, and the groundwater flow velocity increases along the seepage face. From the viewpoint of geomechanics, the horizontal displacement increases, and the vertical displacement decreases toward the slope toe as the rainfall rate increases. This may result from the buoyancy effect associated with the groundwater table rise as the rainfall rate increases. As a result, the overall deformation intensifies toward the slope toe, and the unstable zone, in which the factor of safety against shear failure is less than 1, becomes thicker near the slope toe and propagates from the slope toe toward the slope crest. The numerical simulation results also suggest that the potential tension failure is likely to occur within the slope between the potential shear failure surface and the ground surface.

The Numerical Study on Individual Vacuum Seepage Consolidation Method with Flexible Well Point (연성 Well Point를 적용한 개별진공 침투압밀공법에 관한 해석적 연구)

  • Kim, Byung-Il;Hong, Kang-Han;Kim, Young-Seon;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.1
    • /
    • pp.11-21
    • /
    • 2022
  • In this study, the individual vacuum seepage consolidation method, a new soft ground improvement method, was developed to supplement the conventional suction drain method (individual vacuum preloading method) and the geotechnical behavior was predicted through numerical analysis. If the individual vacuum seepage consolidation method applied, the effect of accelerating settlement and increasing the amount of settlement was high when the aquifer was located in the middle or at the bottom of the layer to the target improvement layer. It was found that the pumping amount in the aquifer does not affect the settlement behavior when it exceeds a certain level. Even vacuum pumping wells were installed in various locations, such as inside or outside of the embankment, the difference in settlement and horizontal displacement was insignificant. In addition, it was predicted that the settlement rate was the fastest and the horizontal displacement (inward) was large when both methods were carried out at the same time. Since this method can reach the target settlement amount very quickly, it was confirmed that it is possible to increase the spacing of vertical drain, thereby securing economic feasibility.

Kinematic Analysis of a Mastication Model Employing the 6-DOF Parallel Mechanism (6자유도의 병렬기구를 사용한 저작 모델의 기구학적 분석)

  • Khang, G.;Tsutsumi, Sadami
    • Journal of Biomedical Engineering Research
    • /
    • v.20 no.4
    • /
    • pp.479-484
    • /
    • 1999
  • 본 연구에서는 사람의 턱 운동과 턱 사이에 작용하는 힘(혹은 압력)을 그대로 나타낼 수 있는 저작로봇을 개발하는 것을 궁극적인 목표로 한다. 이러한 저작로봇이 개발되면, 치과의사가 환자의 턱운동에 나타나는 병변을 진단하고 치료하는데 큰 도움이 될 것으로 사료된다. 또한 , 본 연구에 채택한 병렬기구(parallel mechanism)에대한 순기구학적( forward kinematics)분석은 일반적인 병렬기구의 실계에도 응용될 것으로 기대된다. 본 연구진이 1차적으로 설계한 모델은 베이스와 플랫폼(platform), 그리고 이 둘을 연결하는 3개의 다리로 구성되어 있다. 다리와 플랫폼은 3자유도의 관절로 다리와 베이스는 1자유도의 경첩 관절로 연결되어 있으며, 이 3개의 경첩 관절은 베이스 위의 수평면에서 직선을 따라 움직인다. 경첩 관절의 수평 변위와 세 다리의 길이가 주어졌을 때 플랫폼의 위치와 오리엔테이션을 구하는 순기구학의 해( 解)를 계산해내는 알고리즘을 개발하였다. 이 알고리즘의 특징은 매 순간 오차를 계산하여 이 오차가 줄어드는 방향으로 나아가도록 시간간격(time step)을 조절하는 것이다. 본 알고리즘은 현재 가장 보편적으로 사용되고 있는 뉴튼-렙슨 방법에 비하여 3가지 장점을 나타내고 있다. 우선 , 초기치(initial guess)에 관계없이 수렴한다는 것이다. 또한, 본 알고리즘은 뉴튼-렙슨 방법에 비하여 수렴속도가 훨씬 빠르며, 연산 시간이 매우 짧아져 실제적인 실시간 적용에 적합하다. 마지막으로, 뉴튼-렙슨 방법에서는 여러 개의 해 가운데 어느 곳으로 수렴할 지 예측 할수 없으나 본 알고리즘에서는 초기치에 가장 가까운 해로 수렴한다. 이러한 순기구학의 다중성(multiplicity)문제를 해결하기 위하여 두 개의 조건을 제시하였으며, 이를 적용한 시뮬레이션 결과에 의하면 항상 원하는 해(true solution)에 수렴할 수 있었다.발생량의 감소를 기대 할 수 있는 친환경기술로 유지관리비를 최소화할 수 있는 장점이 있었다. 않은 사람들 중 미래의 검진실행의지에 건강소식지가 영향을 미친 경우는 48.7%였다. 보건교육을 받은 후 유방암 자가검진 실천율은 사업군에서 53.9%로 받기 전의 27.3%보다 증가하였으나 대조군의 경우는 별 차이가 없었다. 연령별로는 60대가 가장 높았고 사업군에서 검진율의 증가분은 30대가 가장 컸다. 교육수준별로는 사업군은 고졸이, 대조군은 전문대졸이 가장 높았고 사업군에서 검진율의 증가분은 고졸에서 가장 컸다. 보건교육 후 유방암과 관련된 건강지식의 정도는 사업군이 3.7점으로 대조군보다 유의하게 높았으며, 유방암 자가검진법을 실천하는 사람들의 동기는 ‘일반 대중매체의 영향’이 가장 많았으며 건강소식지가 동기인 경우도 20.4%였다. 사업군에서 건강소식지가 유방암 자가검진법 실천에 영향을 미친 경우가 79.6%였으며 유방암 자가검진법에 관한 보건교육을 받고 실천하지 않은 사람들 중 미래의 실천의지에 건강소식지가 영향을 미친 경우는 43.6%였다. 이상의 소견에서 지역주민을 대상으로 인쇄매체를 통한 보건교육은 인쇄물만으로도 쉽게 실천 할 수 있는 유방암 자가검진법이 가장 효과적이었으며, 자궁암검진에 관해서도 검진을 받을 수 있도록 지역사회의 보건의료의 하부구조를 정비하여 제도적 장치를 마련하고 정보를 제공한다면 자궁암검진 실천율도 증가할 것이다.고 12.9% 의 발달율을 보여 유의적인 차이를 보이지 않았다. 이상의 결과로 보아 핵이식 수정란을 효율적으로 생산하기 위하여 수핵난자의 세포질에 ionomycin 과 DMAP 의 혼합처리로 탈핵난자의 활성화를 유도하는 것이 효율을 증진시킬 수 있었다고 본다. 또한 공핵수정란을 수정 후 90시간과 114시간 개별 배양하여 할구를 공핵체로 핵이식에 이용하였을 때도 그룹배양에 비하여 효율이 떨어지지 않음을 알 수 있었으며, 수정란의 할구

  • PDF

Investigation of Friction Characteristics between Concrete Slab and Subbase Layers (콘크리트 슬래브와 보조기층 사이의 마찰특성 조사)

  • lim, Jin Sun;Park, Moon Gil;Nam, Young Kug;Jeong, Jin Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6D
    • /
    • pp.719-726
    • /
    • 2009
  • In this study, a series of push-off tests for lean concrete, aggregate, asphalt subbases mainly used in Korea were performed to investigate the friction characteristics between the slab and subbase layers. Use of separation membrane and wet condition of subbase were other parameters in the tests. Horizontal displacements of the slabs and friction coefficients were measured at 1st loading, stable condition (2nd and 3rd loadings), and wet condition (4th loading) by applying 40mm/hour horizontal loadings. Larger maximum friction coefficients were measured in order of the lean concrete, asphalt, aggregate, and subbases using the separation membrane at 1st loading, and in order of the asphalt, aggregate, lean concrete, and subbases using the separation membrane at stable and wet conditions. The friction coefficients of the aggregate and asphalt subbases which did not used the separation membrane decreased by the wet condition while the subbases using the separation membrane were not affected. Additional push-off tests for effects of slab thickness and temperature sensitivity of asphalt will be performed. And, effects of the friction characteristics between the slab and subbase layers on behavior and performance of concrete pavements will be investigated by structural analyses using the test results.

Evaluation of the Shear Strength and Stiffness of Frozen Soil with a Low Water Content (함수비가 낮은 동결토의 전단강도 및 강성 평가)

  • Kim, Sang Yeob;Lee, Jong-Sub;Kim, Young Seok;Byun, Yong-Hoon
    • The Journal of Engineering Geology
    • /
    • v.25 no.1
    • /
    • pp.93-102
    • /
    • 2015
  • The characteristics of frozen soils are one of most important factors for foundation design in cold region. The objective of this study is to evaluate the shear strength and stiffness of frozen soils according to the confining conditions during the freezing and shearing phase. A direct shear box is constructed for the frozen specimens and bender elements are mounted on the wall of the shear box to measure shear wave velocities. Specimens are prepared by mixing sand and silt with a silt fraction of 30% in weight and the degree of saturation of 10%, giving a relative density of 60% for all tests. The temperature of the specimens in the freezer is allowed to fall below -5℃, and then direct shear tests are performed. A series of vertical stresses are applied during the freezing and shearing phase. Shear stress, vertical displacement, and shear wave along the horizontal displacement are measured. Experimental results show that in all the tests, shear strength increases with increasing vertical stress applied during the freezing and shearing phases. The magnitude of the increase in shear strength with increasing vertical stress during shearing under fixed vertical stress in the frozen state is smaller than the magnitude of the increase in vertical stress during freezing and shearing. In addition, the change in shear wave velocities varies with the position of the bender elements. In the case of shear waves passing through the shear plane, the shear wave velocities decrease with increasing horizontal displacement. This study provides an evaluation of the properties of shear strength and stiffness of frozen soils under varied confining condition.

GEOPHYSICAL EXPLORATION FOR THE SITE CHARACTERISTICS OF THE WESTERN THREE-STORY STONE PAGODA IN GAMEUM TEMPLE ( 감은사지 3층석탑(서탑)의 지반 특성을 위한 지구물리탐사)

  • Seo,Man-Cheol;Choe,Hui-Su;Lee,Chan-Hui;O,Jin-Yong
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Twin stone pagodas of the ruins of Kamunsa temple at Kyongju city, Kyungsangbukdo were believed to be built in 682 during the Unified Shilla Kingdom. The 13.4-m-high granodiolite pagodas with the base of 6.78 m x 4.4 m are the largest three-story stone pagoda in Korea. The western pagoda which was re-organized in 1959 is observed to be on the process of severe weathering. Also, some stone contacts are represented by the shape of sharp chevron, which is probably caused by the uneven loading due to the structural unbalance. For the structure-safety diagnosis of the western pagoda, it is necessary to understand its site characteristics and surrounding subsurface environment. Combined geophysical survey such as seismic and resistivity methods was carried out around the western pagoda. The range of 55∼350 Ωm is shown around the pagoda from the electrical resistivity mapping by the Wenner method. The higher resistivities occur the southwestern area, while the lower (<100 Ωm) values indicating the weaker subsurface appear to be on the northeastern area. This result coincides with the measurement of a leaning angle of the pagoda. Along 6 seismic lines, about 3-m-thick uppermost section around the pagoda shows the P-wave velocity of 200∼700 m/s from the refraction survey. Based on the integrated geophysical survey, the foundation of the pagoda is estimated to be in the form of 11-m-side square down to the depth of 3 m.

  • PDF

Real-scale Accelerated Testing to Evaluate Long-term Performance for Bridge/Earthwork Transition Structure Reinforced by Geosynthetics and Cement Treated Materials (토목섬유와 시멘트처리채움재로 보강한 교량/토공 접속구조의 장기공용성 평가를 위한 실물가속시험)

  • Lee, Il-Wha;Choi, Won-Il;Cho, Kook-Hwan;Lee, Kang-Myung;Min, Kyung-Chan
    • Journal of the Korean Society for Railway
    • /
    • v.17 no.4
    • /
    • pp.251-259
    • /
    • 2014
  • The transition zone between an earthwork and a bridge effect to the vehicle's running stability because support stiffness of the roadbed is suddenly changed. The design criteria for the transition structure on ballast track were not particular in the past. However with the introduction of concrete track is introduced, it requires there is a higher performance level required because of maintenance and running stability. In this present paper, a transition structure reinforced with geosynthetics is suggested to improve the performance of existing bridge-earthwork transition structures. The suggested transition structure, in which there is reinforcing of the approach block using high-tension geosynthetics, has a structure similar to that of earth reinforced abutments. The utilized backfill materials are cement treated soil and gravel. These materials are used to reduce water intrusion into the approach block and to increase the recycling of surplus earth materials. An experiment was performed under the same conditions in order to allow a comparison of this new structure with the existing transition structure. Evaluation items are elastic displacement, cumulative settlement, and earth pressure. As for the results of the real-scale accelerated testing, the suggested transition structure has excellent performance for the reduction of earth pressure and settlement. Above all, it has high resistance the variation of the water content.

Regional load deflection rate of multiloop edgewise archwire (Multiloop edgewise arch wire의 부위별 하중변형률)

  • Kim, Byoung-Ho;Yang, Won-Sik
    • The korean journal of orthodontics
    • /
    • v.29 no.6 s.77
    • /
    • pp.673-688
    • /
    • 1999
  • This study was conducted in order to analyze the mechanical characteristics of multiloop edgewise archwire (MEAW). The purposes were 1) to compare load deflection rate (LDR) of MEAW with that of various other arch wires in the individual interbracket span, 2) to compare the wire stiffness in the interbracket span with that in the multi-L-loop region (the span from distal border of the bracket of the lateral incisor to the mesial border of the buccal tube of the second molar), and 3) to verify the experimental results with theoretically derived formula. The single L-loops of five different horizontal lengths and multi-L-loops for the upper and lower arches were made out of .$016\times.022$ permachrome stainless steel wire. Straight segment of plain stainless steel, TMA and NiTi wire of the same dimension were prepared. The LDR was measured using Instron model 4466 with the load cell of 50N capacity at cross head speed of 1.0mm/min, and maximum deflection of 1.0mm. Five specimens were tested under each experimental condition. The wire stiffness number for each interbracket region and multi-L-loop region was calculated from the LDR and the interbracket spans. By dividing the theoretical model of multi-L-loop into 35 linear segments, the energy stored in each segment was obtained. Then the LDR and wire stiffness of single L-loop and multi-L-loop were calculated and compared. The findings were as follows : 1) The average LDR of MEAW in the individual interbracket region was 1/1.53 of that of the NiTi,1/2.47 of TMA and 1/5.16 of the plain stainless steel wire. 2) The wire stiffness of MEAW in the multi-L-loop region was 1.53 times larger than that in the interbracket region, and the LDR was almost twice as large as that of NiTi in that region. 3) According to the theoretically derived equation, the wire stiffness of the single L-loop was lower than that of multi-L-loop. The results of this study suggest that MEAW has the unique mechanical Property which could allow individual tooth movement and transmit elastic force effectively through the entire arch wire.

  • PDF